Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Anionic nanoparticles enable the oral delivery of proteins by enhancing intestinal permeability


The oral delivery of bioactive peptides and proteins is prevented by the intestinal epithelial barrier, in which intercellular tight junction complexes block the uptake of macromolecules. Here we show that anionic nanoparticles induce tight junction relaxation, increasing intestinal permeability and enabling the oral delivery of proteins. This permeation-enhancing effect is a function of nanoparticle size and charge, with smaller (≤ 200 nm) and more negative particles (such as silica) conferring enhanced permeability. In healthy mice, silica nanoparticles enabled the oral delivery of insulin and exenatide, with 10 U kg−1 orally delivered insulin sustaining hypoglycaemia for a few hours longer than a 1 U kg−1 dose of subcutaneously injected insulin. In healthy, hyperglycaemic and diabetic mice, the oral delivery of 10 U kg−1 insulin led to a dose-adjusted bioactivity of, respectively, 35%, 29% and 23% that of the subcutaneous injection of 1 U kg−1 insulin. The permeation-enhancing effect of the nanoparticles was reversible, non-toxic, and attributable to the binding to integrins on the surface of epithelial cells.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Smaller and more negatively charged nanoparticles potently increased intestinal monolayer permeability in vitro.
Fig. 2: 50 nm anionic nanoparticles reversibly permeabilized intestinal epithelia in mice.
Fig. 3: Silica nanoparticles enabled oral protein delivery in healthy mice.
Fig. 4: Silica nanoparticles enabled oral protein delivery in mice with streptozotocin-induced type 1 diabetes.
Fig. 5: Silica nanoparticles increased permeability by binding cell surface integrins and inducing tight junction rearrangement.

Data availability

The main data supporting the results in this study are available within the Article and Supplementary Information. The raw and analysed datasets generated during the study are available for research purposes from the corresponding authors on reasonable request.


  1. 1.

    McLenon, J. & Rogers, M. A. M. The fear of needles: a systematic review and meta-analysis. J. Adv. Nurs. 75, 30–42 (2018).

    PubMed  Article  Google Scholar 

  2. 2.

    Howe, C. J., Ratcliffe, S. J., Tuttle, A., Dougherty, S. & Lipman, T. H. Needle anxiety in children with type 1 diabetes and their mothers. MCN Am. J. Matern. Child Nurs. 36, 25–31 (2011).

    PubMed  Article  Google Scholar 

  3. 3.

    Sokolowski, C. J., Giovannitti, J. A. & Boynes, S. G. Needle phobia: etiology, adverse consequences, and patient management. Dent. Clin. North Am. 54, 731–734 (2010).

    PubMed  Article  Google Scholar 

  4. 4.

    Peyrot, M., Rubin, R. R., Kruger, D. F. & Travis, L. B. Correlates of insulin injection omission. Diabetes Care 33, 240–245 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  5. 5.

    Zambanini, A., Newson, R. B., Maisey, M. & Feher, M. D. Injection related anxiety in insulin-treated diabetes. Diabetes Res. Clin. Pract. 46, 239–246 (1999).

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    Moroz, E., Matoori, S. & Leroux, J. C. Oral delivery of macromolecular drugs: where we are after almost 100 years of attempts. Adv. Drug Deliv. Rev. 101, 108–121 (2015).

    Article  CAS  Google Scholar 

  7. 7.

    Morishita, M. & Peppas, N. A. Is the oral route possible for peptide and protein drug delivery?. Drug Discov. Today 11, 905–910 (2006).

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    Shen, L., Weber, C. R., Raleigh, D. R., Yu, D. & Turner, J. R. Tight junction pore and leak pathways: a dynamic duo. Annu. Rev. Physiol. 73, 283–309 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. 9.

    Mrsny, R. J. Oral drug delivery research in Europe. J. Control. Release 161, 247–253 (2012).

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    Walsh, E. G. et al. Oral delivery of macromolecules: rationale underpinning Gastrointestinal Permeation Enhancement Technology (GIPET®). Ther. Deliv. 2, 1595–1610 (2011).

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    Banerjee, A. et al. Ionic liquids for oral insulin delivery. Proc. Natl Acad. Sci. USA 115, 7296–7301 (2018).

    CAS  PubMed  Article  Google Scholar 

  12. 12.

    Fein, K. C., Lamson, N. G. & Whitehead, K. A. Structure-function analysis of phenylpiperazine derivatives as intestinal permeation enhancers. Pharm. Res. 34, 1320–1329 (2017).

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    Bzik, V. A. & Brayden, D. J. An assessment of the permeation enhancer, 1-phenyl-piperazine (PPZ), on paracellular flux across rat intestinal mucosae in Ussing chambers. Pharm. Res. 33, 2506–2516 (2016).

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Zijlstra, E., Heinemann, L. & Plum-Mörschel, L. Oral insulin reloaded: a structured approach. J. Diabetes Sci. Technol. 8, 458–465 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. 15.

    Arbit, E. & Kidron, M. Oral insulin delivery in a physiologic context: review. J. Diabetes Sci. Technol. 11, 825–832 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. 16.

    Aguirre, T. A. S. et al. Current status of selected oral peptide technologies in advanced preclinical development and in clinical trials. Adv. Drug Deliv. Rev. 106, 223–241 (2016).

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    Lamson, N. G., Cusimano, G., Suri, K., Zhang, A. & Whitehead, K. A. The pH of piperazine derivative solutions predicts their utility as transepithelial permeation enhancers. Mol. Pharm. 13, 578–585 (2016).

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Whitehead, K., Karr, N. & Mitragotri, S. Safe and effective permeation enhancers for oral drug delivery. Pharm. Res. 25, 1782–1788 (2008).

    CAS  PubMed  Article  Google Scholar 

  19. 19.

    McCartney, F., Gleeson, J. P. & Brayden, D. J. Safety concerns over the use of intestinal permeation enhancers: a mini-review. Tissue Barriers 4, (2016).

  20. 20.

    Kam, K. R. et al. Nanostructure-mediated transport of biologics across epithelial tissue: enhancing permeability via nanotopography. Nano Lett. 13, 164–171 (2013).

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    Schoellhammer, C. M. et al. Ultrasound-mediated gastrointestinal drug delivery. Sci. Transl. Med. 7, 310ra168 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  22. 22.

    Fan, W. et al. Functional nanoparticles exploit the bile acid pathway to overcome multiple barriers of the intestinal epithelium for oral insulin delivery. Biomaterials 151, 13–23 (2018).

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    Zhu, X. et al. Penetratin derivative-based nanocomplexes for enhanced intestinal insulin delivery. Mol. Pharm. 11, 317–328 (2014).

    CAS  PubMed  Article  Google Scholar 

  24. 24.

    Liu, L. et al. pH- and amylase-responsive carboxymethyl starch/poly (2-isobutyl-acrylic acid) hybrid microgels as effective enteric carriers for oral insulin delivery. Biomacromolecules 19, 2123–2136 (2018).

    CAS  PubMed  Article  Google Scholar 

  25. 25.

    Sheng, J. et al. Enhancing insulin oral absorption by using mucoadhesive nanoparticles loaded with LMWP-linked insulin conjugates. J. Control. Release 233, 181–190 (2016).

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    Shan, W. et al. Enhanced oral delivery of protein drugs using zwitterion-functionalized nanoparticles to overcome both the diffusion and absorption barriers. ACS Appl. Mater. Interf. 8, 25444–25453 (2016).

    CAS  Article  Google Scholar 

  27. 27.

    Lee, J. H., Sahu, A., Choi, W. I., Lee, J. Y. & Tae, G. ZOT-derived peptide and chitosan functionalized nanocarrier for oral delivery of protein drug. Biomaterials 103, 160–169 (2016).

    PubMed  Article  CAS  Google Scholar 

  28. 28.

    Wong, C. Y., Al-Salami, H. & Dass, C. R. Potential of insulin nanoparticle formulations for oral delivery and diabetes treatment. J. Control. Release 264, 247–275 (2017).

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    Larregieu, C. A. & Benet, L. Z. Drug discovery and regulatory considerations for improving in silico and in vitro predictions that use Caco-2 as a surrogate for human intestinal permeability measurements. AAPS J. 15, 483–497 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. 30.

    Atuma, C., Strugala, V., Allen, A. & Holm, L. The adherent gastrointestinal mucus gel layer: thickness and physical state in vivo. Am. J. Physiol. Gastrointest. Liver Physiol. 280, G922–G929 (2001).

    CAS  PubMed  Article  Google Scholar 

  31. 31.

    Grießinger, J. et al. Methods to determine the interactions of micro- and nanoparticles with mucus. Eur. J. Pharm. Biopharm. 96, 464–476 (2015).

    PubMed  Article  CAS  Google Scholar 

  32. 32.

    Bischoff, S. C. et al. Intestinal permeability – a new target for disease prevention and therapy. BMC Gastroenterol. 14, 189 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  33. 33.

    Taverner, A. et al. Enhanced paracellular transport of insulin can be achieved via transient induction of myosin light chain phosphorylation. J. Control. Release 210, 189–197 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. 34.

    Gupta, V. et al. Delivery of exenatide and insulin using mucoadhesive intestinal devices. Ann. Biomed. Eng. 44, 1993–2007 (2016).

    PubMed  Article  Google Scholar 

  35. 35.

    Edgerton, D. S. et al. Insulin’s direct effects on the liver dominate the control of hepatic glucose production. J. Clin. Invest. 116, 521–527 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. 36.

    Morishita, I., Morishita, M., Takayama, K., Machida, Y. & Nagai, T. Hypoglycemic effect of novel oral microspheres of insulin with protease inhibitor in normal and diabetic rats. Int. J. Pharm. 78, 9–16 (1992).

    CAS  Article  Google Scholar 

  37. 37.

    McConnell, E. L., Basit, A. W. & Murdan, S. Measurements of rat and mouse gastrointestinal pH, fluid and lymphoid tissue, and implications for in-vivo experiments. J. Pharm. Pharmacol. 60, 63–70 (2008).

    CAS  PubMed  Article  Google Scholar 

  38. 38.

    Lowman, A. M., Morishita, M., Kajita, M., Nagai, T. & Peppas, N. A. Oral delivery of insulin using pH responsive complexation gels. J. Pharm. Sci. 88, 933–937 (1999).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  39. 39.

    Genovese, S., Mannucci, E. & Ceriello, A. A review of the long-term efficacy, tolerability, and safety of exenatide once weekly for type 2 diabetes. Adv. Ther. 34, 1791–1814 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. 40.

    Wu, K. K. & Huan, Y. Streptozotocin-induced diabetic models in mice and rats. Curr. Protoc. Pharmacol. 70, 5.47.1–5.47.20 (2015).

    Google Scholar 

  41. 41.

    Sun, H., Chow, E. C., Liu, S., Du, Y. & Pang, K. S. The Caco-2 cell monolayer: usefulness and limitations. Expert Opin. Drug Metab. Toxicol. 4, 395–411 (2008).

    CAS  PubMed  Article  Google Scholar 

  42. 42.

    Lopes, M. A. et al. Intestinal absorption of insulin nanoparticles: contribution of M cells. Nanomed. Nanotechnol. Biol. Med. 10, 1139–1151 (2014).

    CAS  Article  Google Scholar 

  43. 43.

    Walsh, L. et al. Nanotopography facilitates in vivo transdermal delivery of high molecular weight therapeutics through an integrin-dependent mechanism. Nano Lett. 15, 2434–2441 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  44. 44.

    Gilcrease, M. Z. Integrin signaling in epithelial cells. Cancer Lett. 247, 1–25 (2007).

    CAS  PubMed  Article  Google Scholar 

  45. 45.

    Muller, W. A. Mechanisms of leukocyte transendothelial migration. Annu. Rev. Pathol. 6, 323–344 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. 46.

    Beaulieu, J.-F. Integrins and human intestinal cell functions. Front. Biosci. 4, 310–321 (1999).

    Article  Google Scholar 

  47. 47.

    Ölander, M., Wiśniewski, J. R., Matsson, P., Lundquist, P. & Artursson, P. The proteome of filter-grown Caco-2 cells with a focus on proteins involved in drug disposition. J. Pharm. Sci. 105, 817–827 (2016).

    PubMed  Article  CAS  Google Scholar 

  48. 48.

    Salama, N. N., Eddington, N. D. & Fasano, A. Tight junction modulation and its relationship to drug delivery. Adv. Drug Deliv. Rev. 58, 15–28 (2006).

    CAS  PubMed  Article  Google Scholar 

  49. 49.

    Walczak, A. P. et al. Translocation of differently sized and charged polystyrene nanoparticles in in vitro intestinal cell models of increasing complexity. Nanotoxicology 9, 453-461 (2014).

    PubMed  Article  CAS  Google Scholar 

  50. 50.

    Yu, S. H. et al. Nanoparticle-induced tight-junction opening for the transport of an anti-angiogenic sulfated polysaccharide across Caco-2 cell monolayers. Acta Biomater. 9, 7449–7459 (2013).

    CAS  PubMed  Article  Google Scholar 

  51. 51.

    Murugadoss, S. et al. Toxicology of silica nanoparticles: an update. Arch. Toxicol. 91, 2967–3010 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  52. 52.

    Whitehead, K., Shen, Z. & Mitragotri, S. Oral delivery of macromolecules using intestinal patches: applications for insulin delivery. J. Control. Release 98, 37–45 (2004).

    CAS  PubMed  Article  Google Scholar 

  53. 53.

    Banerjee, A., Lee, J. & Mitragotri, S. Intestinal mucoadhesive devices for oral delivery of insulin. Bioeng. Transl. Med. 1, 338–346 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  54. 54.

    Young, L., Sung, J., Stacey, G. & Masters, J. R. Detection of Mycoplasma in cell cultures. Nat. Protoc. 5, 929–934 (2010).

    CAS  PubMed  Article  Google Scholar 

  55. 55.

    Chong, S., Dando, S. A. & Morrison, R. A. Evaluation of Biocoat® Intestinal Epithelium Differentiation Environment (3-day cultured Caco-2 cells) as an absorption screening model with improved screening productivity. Pharm. Res. 14, 1835–1837 (1997).

    CAS  PubMed  Article  Google Scholar 

  56. 56.

    Yamashita, S. et al. New and better protocols for a short-term Caco-2 cell culture system. J. Pharm. Sci. 91, 669–679 (2002).

    CAS  PubMed  Article  Google Scholar 

  57. 57.

    Gupta, V., Doshi, N. & Mitragotri, S. Permeation of insulin, calcitonin and exenatide across Caco-2 monolayers: measurement using a rapid, 3-day system. PLoS ONE 8, e57136 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  58. 58.

    Xu, Q. et al. Impact of surface polyethylene glycol (PEG) density on biodegradable nanoparticle transport in mucus ex vivo and distribution in vivo. ACS Nano 9, 9217–9227 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  59. 59.

    Pereira De Sousa, I. et al. Mucus permeating carriers: formulation and characterization of highly densely charged nanoparticles. Eur. J. Pharm. Biopharm. 97, 273–279 (2015).

    CAS  PubMed  Article  Google Scholar 

  60. 60.

    Ball, R. L., Knapp, C. M. & Whitehead, K. A. Lipidoid nanoparticles for siRNA delivery to the intestinal epithelium: in vitro investigations in a Caco-2 model. PLoS ONE 10, e0133154 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

Download references


The authors thank L. Kasiewicz for her assistance in revising and editing this manuscript. They also acknowledge M. Koval (Emory University) for his guidance on examining tight junctions. N.G.L. acknowledges funding support from the Thomas and Adrienne Klopack Graduate Fellowship and National Science Foundation Graduate Research Fellowship Program (NSF GRFP). This material is based on work supported by the NSF GRFP under grant no. DGE1252522. Any opinions, findings and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the NSF. The authors also acknowledge support from the National Institutes of Health, grant no. 1DP2OD026005-01.

Author information




N.G.L. and K.A.W. conceived and designed the experiments. N.G.L., A.B., and K.C.F. performed the experiments. N.G.L. wrote and revised the manuscript with input from all coauthors.

Corresponding author

Correspondence to Kathryn A. Whitehead.

Ethics declarations

Competing interests

K.A.W. and N.G.L. are registered as inventors on Patent Cooperation Treaty (PCT) application PCT/US2018/042035, which covers aspects of the technology presented here.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary Information

Supplementary figures and video caption.

Reporting Summary

Supplementary Video 1

Silica nanoparticles localize at the apical surface of intestinal cells (but not in their interior).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lamson, N.G., Berger, A., Fein, K.C. et al. Anionic nanoparticles enable the oral delivery of proteins by enhancing intestinal permeability. Nat Biomed Eng 4, 84–96 (2020).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing