Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Functionalized helical fibre bundles of carbon nanotubes as electrochemical sensors for long-term in vivo monitoring of multiple disease biomarkers

Abstract

Mechanical mismatches between implanted electronics and biological tissues can lead to inaccurate readings and long-term tissue damage. Here, we show that functionalized multi-walled carbon nanotubes twisted into helical fibre bundles that mimic the hierarchical structure of muscle can monitor multiple disease biomarkers in vivo. The flexible fibre bundles are injectable, have a low bending stiffness and display ultralow stress under compression. As proof-of-concept evidence of the sensing capabilities of these fibre bundles, we show that the fibre bundles enable the spatially resolved and real-time monitoring of H2O2 when implanted in tumours in mice, and that they can be integrated with a wireless transmission system on an adhesive skin patch to monitor calcium ions and glucose in the venous blood of cats for 28 d. The versatility of the helical fibre bundles as chemically functionalized electrochemical sensors makes them suitable for multiple sensing applications in biomedicine and healthcare.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Hierarchical helical structure and the implantation of CNT fibre.
Fig. 2: Mechanical match, biocompatibility and biointegration of the implanted CNT fibre.
Fig. 3: The structure and performance of the SSF library and the fabrication of MSFs.
Fig. 4: The structure and stability of the MSF.
Fig. 5: The use of MSFs for spatially resolved analysis.
Fig. 6: The use of MSFs for real-time and long-term multiplex monitoring in vivo.

Similar content being viewed by others

Data availability

The main data supporting the results in this study are available within the paper and its Supplementary Information. The raw and analysed datasets that were generated during this study are available from the corresponding authors on reasonable request.

References

  1. Clausen, J. Man, machine and in between. Nature 457, 1080–1081 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. Yoshida Kozai, T. D. et al. Ultrasmall implantable composite microelectrodes with bioactive surfaces for chronic neural interfaces. Nat. Mater. 11, 1065–1073 (2012).

    Article  Google Scholar 

  3. Canales, A. et al. Multifunctional fibers for simultaneous optical, electrical and chemical interrogation of neural circuits in vivo. Nat. Biotechnol. 33, 277–284 (2015).

    Article  CAS  PubMed  Google Scholar 

  4. Jun, J. J. et al. Fully integrated silicon probes for high-density recording of neural activity. Nature 551, 232–236 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yun, S. H. & Kwok, S. J. J. Light in diagnosis, therapy and surgery. Nat. Biomed. Eng. 1, 0008 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Minev, I. R. et al. Electronic dura mater for long-term multimodal neural interfaces. Science 347, 159–163 (2015).

    Article  CAS  PubMed  Google Scholar 

  7. An, D. et al. Designing a retrievable and scalable cell encapsulation device for potential treatment of type 1 diabetes. Proc. Natl Acad. Sci. USA 115, E263–E272 (2018).

    Article  CAS  PubMed  Google Scholar 

  8. Vermesh, O. et al. An intravascular magnetic wire for the high-throughput retrieval of circulating tumour cells in vivo. Nat. Biomed. Eng. 2, 696–705 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Feiner, R. & Dvir, T. Tissue–electronics interfaces: from implantable devices to engineered tissues. Nat. Rev. Mater. 3, 17076 (2017).

    Article  Google Scholar 

  10. Yu, X. et al. Needle-shaped ultrathin piezoelectric microsystem for guided tissue targeting via mechanical sensing. Nat. Biomed. Eng. 2, 165–172 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. Lacour, S. P., Courtine, G. & Guck, J. Materials and technologies for soft implantable neuroprostheses. Nat. Rev. Mater. 1, 16063 (2016).

    Article  CAS  Google Scholar 

  12. Chen, R., Canales, A. & Anikeeva, P. Neural recording and modulation technologies. Nat. Rev. Mater. 2, 16093 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hong, G. & Lieber, C. M. Novel electrode technologies for neural recordings. Nat. Rev. Neurosci. 20, 330–345 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yang, X. et al. Bioinspired neuron-like electronics. Nat. Mater. 18, 510–517 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ling, S., Kaplan, D. L. & Buehler, M. J. Nanofibrils in nature and materials engineering. Nat. Rev. Mater. 3, 18016 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Buehler, M. J. Nature designs tough collagen: explaining the nanostructure of collagen fibrils. Proc. Natl Acad. Sci. USA 103, 12285–12290 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hang, F. & Barber, A. H. Nano-mechanical properties of individual mineralized collagen fibrils from bone tissue. J. R. Soc. Interface 8, 500–505 (2011).

    Article  PubMed  Google Scholar 

  18. Depalle, B., Qin, Z., Shefelbine, S. J. & Buehler, M. J. Influence of cross-link structure, density and mechanical properties in the mesoscale deformation mechanisms of collagen fibrils. J. Mech. Behav. Biomed. Mater. 52, 1–13 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Dai, X., Hong, G., Gao, T. & Lieber, C. M. Mesh nanoelectronics: seamless integration of electronics with tissues. Acc. Chem. Res. 51, 309–318 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Darnell, M. & Mooney, D. J. Leveraging advances in biology to design biomaterials. Nat. Mater. 16, 1178–1184 (2017).

    Article  CAS  PubMed  Google Scholar 

  21. Baker, B. M. et al. Cell-mediated fibre recruitment drives extracellular matrix mechanosensing in engineered fibrillar microenvironments. Nat. Mater. 14, 1262–1268 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Waldert, S. Invasive vs. non-invasive neuronal signals for brain–machine interfaces: will one prevail? Front. Neurosci. 10, 295 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Vitale, F. et al. Fluidic microactuation of flexible electrodes for neural recording. Nano Lett. 18, 326–335 (2018).

    Article  CAS  PubMed  Google Scholar 

  24. Liu, J. et al. Syringe-injectable electronics. Nat. Nanotechnol. 10, 629–636 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Close, R. I. Dynamic properties of mammalian skeletal muscles. Physiol. Rev. 52, 129–197 (1972).

    Article  CAS  PubMed  Google Scholar 

  26. Alonso, J. L. & Goldmann, W. H. Feeling the forces: atomic force microscopy in cell biology. Life Sci. 72, 2553–2560 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Liu, Y., Zhao, Y., Sun, B. & Chen, C. Understanding the toxicity of carbon nanotubes. Acc. Chem. Res. 46, 702–713 (2013).

    Article  CAS  PubMed  Google Scholar 

  28. Jhunjhunwala, S. et al. Neutrophil responses to sterile implant materials. PLoS ONE 10, e0137550 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Gurtner, G. C., Werner, S., Barrandon, Y. & Longaker, M. T. Wound repair and regeneration. Nature 453, 314–321 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Yang, Z. et al. Recent advancement of nanostructured carbon for energy applications. Chem. Rev. 115, 5159–5223 (2015).

    Article  CAS  PubMed  Google Scholar 

  31. D’Amico, A. V., Chen, M.-H., Roehl, K. A. & Catalona, W. J. Preoperative PSA velocity and the risk of death from prostate cancer after radical prostatectomy. N. Engl. J. Med. 351, 125–135 (2004).

    Article  PubMed  Google Scholar 

  32. Gao, W. et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 529, 509–514 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhu, S., Nih, L., Carmichael, S. T., Lu, Y. & Segura, T. Enzyme-responsive delivery of multiple proteins with spatiotemporal control. Adv. Mater. 27, 3620–3625 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Oxley, T. J. et al. Minimally invasive endovascular stent-electrode array for high-fidelity, chronic recordings of cortical neural activity. Nat. Biotechnol. 34, 320–327 (2016).

    Article  CAS  PubMed  Google Scholar 

  35. Luo, Y., Liu, H., Rui, Q. & Tian, Y. Detection of extracellular H2O2 released from human liver cancer cells based on TiO2 nanoneedles with enhanced electron transfer of cytochrome c. Anal. Chem. 81, 3035–3041 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. Rodenhizer, D. et al. A three-dimensional engineered tumour for spatial snapshot analysis of cell metabolism and phenotype in hypoxic gradients. Nat. Mater. 15, 227–234 (2016).

    Article  CAS  PubMed  Google Scholar 

  37. Chen, Q. et al. H2O2-responsive liposomal nanoprobe for photoacoustic inflammation imaging and tumor theranostics via in vivo chromogenic assay. Proc. Natl Acad. Sci. USA 114, 5343–5348 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hong, G., Antaris, A. L. & Dai, H. Near-infrared fluorophores for biomedical imaging. Nat. Biomed. Eng. 1, 0010 (2017).

    Article  CAS  Google Scholar 

  39. Lipani, L. et al. Non-invasive, transdermal, path-selective and specific glucose monitoring via a graphene-based platform. Nat. Nanotechnol. 13, 504–511 (2018).

    Article  CAS  PubMed  Google Scholar 

  40. Lee, H. et al. Wearable/disposable sweat-based glucose monitoring device with multistage transdermal drug delivery module. Sci. Adv. 3, e1601314 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Tarlani, A. et al. New ZnO nanostructures as non-enzymatic glucose biosensors. Biosens. Bioelectron. 67, 601–607 (2015).

    Article  CAS  PubMed  Google Scholar 

  42. Tang, Z., Fu, Y. & Ma, Z. Bovine serum albumin as an effective sensitivity enhancer for peptide-based amperometric biosensor for ultrasensitive detection of prostate specific antigen. Biosens. Bioelectron. 94, 394–399 (2017).

    Article  CAS  PubMed  Google Scholar 

  43. Chen, P. et al. Hierarchically arranged helical fibre actuators driven by solvents and vapours. Nat. Nanotechnol. 10, 1077–1083 (2015).

    Article  CAS  PubMed  Google Scholar 

  44. He, X. Q. et al. Buckling analysis of multi-walled carbon nanotubes: a continuum model accounting for van der Waals interaction. J. Mech. Phys. Solids 53, 303–326 (2005).

    Article  CAS  Google Scholar 

  45. Ru, C. Q. Effect of van der Waals forces on axial buckling of a double-walled carbon nanotube. J. Appl. Phys. 87, 7227–7231 (2000).

    Article  CAS  Google Scholar 

  46. Natsuki, T. et al. Stability analysis of double-walled carbon nanotubes as AFM probes based on a continuum model. Carbon 49, 2532–2537 (2011).

    Article  CAS  Google Scholar 

  47. Timesli, A. et al. Prediction of the critical buckling load of multi-walled carbon nanotubes under axial compression. C. R. Mec. 345, 158–168 (2017).

    Article  Google Scholar 

  48. Khosravian, N. & Rafii-Tabar, H. Computational modelling of a non-viscous fluid flow in a multi-walled carbon nanotube modelled as a Timoshenko beam. Nanotechnology 19, 275703 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Sun, H. et al. Energy harvesting and storage in 1D devices. Nat. Rev. Mater. 2, 17023 (2017).

    Article  CAS  Google Scholar 

  50. Tang, T. et al. Adhesion between single-walled carbon nanotubes. J. Appl. Phys. 97, 074304 (2005).

    Article  Google Scholar 

  51. Huang, S. Q. et al. Pattern instability of a soft elastic thin film under van der Waals forces. Mech. Mater. 38, 88–99 (2006).

    Article  Google Scholar 

  52. Israelachvili, J. N. Intermolecular and Surface Forces (Academic, 2011).

Download references

Acknowledgements

We thank A. L. Chun of Science Storylab for her suggestions and critique; F. Han from Fudan University for help with the wireless-transmitting system. This work was supported by MOST (grant number 2016YFA0203302), NSFC (grant numbers 21634003, 51573027, 51673043, 21604012, 21805044, 21875042, 11602058 and 11872150), STCSM (grant numbers 16JC1400702, 17QA1400400, 18QA1400700, 18QA1400800 and 19QA1400500), SHMEC (grant number 2017-01-07-00-07-E00062), SEDF (grant number 16CG01) and Yanchang Petroleum Group and China Postdoctoral Science Foundation (grant numbers 2017M610223 and 2018T110334). This work was also supported by Shanghai Municipal Science and Technology Major Project (2018SHZDZX01) and ZJLab (to H.Y.).

Author information

Authors and Affiliations

Authors

Contributions

X.S., F.X., H.Y. and H.P. conceived and designed the research project. L.W., Z.W. and S.X. performed the experiments. F.L. and Y.Y. performed numerical simulations. L.W., S.X. and Z.W. analysed the data. All of the authors discussed the data and wrote the paper.

Corresponding authors

Correspondence to Xuemei Sun, Fan Xu, Hongbo Yu or Huisheng Peng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary methods, figures, tables, references and caption for Supplementary Video 1.

Reporting Summary

Supplementary Video 1

Wireless monitoring system integrated with MSFs on a living cat for the real-time transmission of data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Xie, S., Wang, Z. et al. Functionalized helical fibre bundles of carbon nanotubes as electrochemical sensors for long-term in vivo monitoring of multiple disease biomarkers. Nat Biomed Eng 4, 159–171 (2020). https://doi.org/10.1038/s41551-019-0462-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41551-019-0462-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing