Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Aberrant mechanosensing in injured intervertebral discs as a result of boundary-constraint disruption and residual-strain loss

Abstract

In fibrous tissues, prestressed boundary constraints at bone interfaces instil residual strain throughout the tissue, even when unloaded. For example, internal swelling pressures in the central nucleus pulposus of the intervertebral disc generate prestrain in the outer annulus fibrosus. With injury and depressurization, these residual strains are lost. Here we show that the loss of residual strains in the intervertebral disc alters the microenvironment and instigates aberrant tissue remodelling and the adoption of atypical cellular phenotypes. By using puncture surgery of the annulus fibrosus in rabbits, ex vivo puncture experiments and electrospun nanofibrous scaffolds recapitulating these evolving boundary constraints, we show that the loss of residual strain promotes short-term apoptosis and the emergence of a fibrotic phenotype. We also show that local fibre organization and cellular contractility mediate this process and that the aberrant cellular changes could be abrogated by targeting the cell-mechanosensing machinery with small molecules. Our findings indicate that injury to dense connective tissues under prestrain alters boundary constraints and residual strain; this leads to aberrant mechanosensing, which in turn promotes disease progression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: In vivo disc puncture and release of residual strains alters mechanics and initiates aberrant remodelling of the disc.
Fig. 2: Scaffold-based system to evaluate the impact of prestrain in fibrous microenvironments.
Fig. 3: Boundary conditions and fibre organization govern cell spreading and mechanosensation.
Fig. 4: Local fibre organization mediates AF cell phenotype and biosynthetic response.
Fig. 5: In vitro disc puncture releases residual strain, altering fibre morphology and disc mechanics and triggering apoptosis.
Fig. 6: Cells respond differently to stretch and release of tension.
Fig. 7: Disc injury initiates altered mechanosensing leading to soft tissue degeneration.

Similar content being viewed by others

Data availability

The main data supporting the results in this study are available in the Article and Supplementary Information. The raw and analysed datasets generated during the study are available for research purposes from the corresponding author on reasonable request.

References

  1. Adams, M. A. & Roughley, P. J. What is intervertebral disc degeneration, and what causes it? Spine 31, 2151–2161 (2006).

    Article  PubMed  Google Scholar 

  2. Deyo, R. A., Mirza, S. K. & Martin, B. I. Back pain prevalence and visit rates. Spine 31, 2724–2727 (2006).

    Article  PubMed  Google Scholar 

  3. Lotz, J. C. & Ulrich, J. A. Innervation, inflammation, and hypermobility may characterize pathologic disc degeneration: review of animal model data. J. Bone Joint Surg. Am. 88, 76–82 (2006).

    PubMed  Google Scholar 

  4. Urban, J. P. G., Roberts, S. & Ralphs, J. R. The nucleus of the intervertebral disc from development to degeneration. Am. Zool. 40, 53–61 (2000).

    Google Scholar 

  5. Bonnevie, E. D. & Mauck, R. L. Physiology and engineering of the graded interfaces of musculoskeletal junctions. Annu. Rev. Biomed. Eng. 20, 403–429 (2018).

    Article  CAS  PubMed  Google Scholar 

  6. Urban, J. P. & Maroudas, A. Swelling of the intervertebral disc in vitro. Connect. Tissue Res. 9, 1–10 (1981).

    Article  CAS  PubMed  Google Scholar 

  7. Guehring, T. et al. Intradiscal pressure measurements in normal discs, compressed discs and compressed discs treated with axial posterior disc distraction: an experimental study on the rabbit lumbar spine model. Eur. Spine J. 15, 597–604 (2006).

    Article  PubMed  Google Scholar 

  8. Michalek, A. J., Gardner-Morse, M. G. & Iatridis, J. C. Large residual strains are present in the intervertebral disc annulus fibrosus in the unloaded state. J. Biomech. 45, 1227–1231 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Plotnikov, S. V., Pasapera, A. M., Sabass, B. & Waterman, C. M. Force fluctuations within focal adhesions mediate ECM-rigidity sensing to guide directed cell migration. Cell 151, 1513–1527 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Dupont, S. et al. Role of YAP/TAZ in mechanotransduction. Nature 474, 179–183 (2011).

    Article  CAS  Google Scholar 

  11. Engler, A. J., Sen, S., Sweeney, H. L. & Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Li, C. X. et al. MicroRNA-21 preserves the fibrotic mechanical memory of mesenchymal stem cells. Nat. Mater. 16, 379–389 (2017).

    Article  CAS  PubMed  Google Scholar 

  13. Iatridis, J. C. et al. Degeneration affects the anisotropic and nonlinear behaviors of human anulus fibrosus in compression. J. Biomech. 31, 535–544 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Masuda, K. et al. A novel rabbit model of mild, reproducible disc degeneration by an anulus needle puncture: correlation between the degree of disc injury and radiological and histological appearances of disc degeneration. Spine 30, 5–14 (2005).

    Article  PubMed  Google Scholar 

  15. Martin, J. T. et al. Needle puncture injury causes acute and long-term mechanical deficiency in a mouse model of intervertebral disc degeneration. J. Orthop. Res. 31, 1276–1282 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sivaguru, M. et al. Quantitative analysis of collagen fiber organization in injured tendons using Fourier transform-second harmonic generation imaging. Opt. Express 18, 24983–24993 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Tomasek, J. J., Gabbiani, G., Hinz, B., Chaponnier, C. & Brown, R. A. Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat. Rev. Mol. Cell Biol. 3, 349–363 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Hinz, B. et al. The myofibroblast: one function, multiple origins. Am. J. Pathol. 170, 1807–1816 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li, W.-J., Mauck, R. L., Cooper, J. A., Yuan, X. & Tuan, R. S. Engineering controllable anisotropy in electrospun biodegradable nanofibrous scaffolds for musculoskeletal tissue engineering. J. Biomech. 40, 1686–1693 (2007).

    Article  PubMed  Google Scholar 

  20. Driscoll, T. P., Cosgrove, B. D., Heo, S.-J., Shurden, Z. E. & Mauck, R. L. Cytoskeletal to nuclear strain transfer regulates YAP signaling in mesenchymal stem cells. Biophys. J. 108, 2783–2793 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cosgrove, B. D. et al. N-cadherin adhesive interactions modulate matrix mechanosensing and fate commitment of mesenchymal stem cells. Nat. Mater. 15, 1297–1306 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. McLeod, C. M. & Mauck, R. L. High fidelity visualization of cell-to-cell variation and temporal dynamics in nascent extracellular matrix formation. Sci. Rep. 6, 38852 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Loebel, C., Mauck, R. L. & Burdick, J. Local nascent protein deposition and remodeling guide mesenchymal stromal cell mechanosensing and fate in three-dimensional hydrogels. Nat. Mater. 18, 883–891 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gardner-Morse, M. G. & Stokes, I. A. Physiological axial compressive preloads increase motion segment stiffness, linearity and hysteresis in all six degrees of freedom for small displacements about the neutral posture. J. Orthop. Res. 21, 547–552 (2003).

    Article  PubMed  Google Scholar 

  25. Egerbacher, M., Arnoczky, S. P., Caballero, O., Lavagnino, M. & Gardner, K. L. Loss of homeostatic tension induces apoptosis in tendon cells: an in vitro study. Clin. Orthop. Relat. Res. 466, 1562–1568 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Maeda, T. et al. Conversion of mechanical force into TGF-β-mediated biochemical signals. Curr. Biol. 21, 933–941 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Han, W. M. et al. Microstructural heterogeneity directs micromechanics and mechanobiology in native and engineered fibrocartilage. Nat. Mater. 15, 477–484 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Han, W. M. et al. Impact of cellular microenvironment and mechanical perturbation on calcium signalling in meniscus fibrochondrocytes. Eur. Cell. Mater. 27, 321–331 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Godbout, C. et al. The mechanical environment modulates intracellular calcium oscillation activities of myofibroblasts. PLoS ONE 8, e64560 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Edlund, S., Landström, M., Heldin, C.-H. & Aspenström, P. Transforming growth factor-β-induced mobilization of actin cytoskeleton requires signaling by small GTPases Cdc42 and RhoA. Mol. Biol. Cell 13, 902–914 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhang, Y. E. Non-Smad pathways in TGF-β signaling. Cell Res. 19, 128–139 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bond, J. E. et al. Wound contraction is attenuated by fasudil inhibition of Rho-associated kinase. Plast. Reconstr. Surg. 128, 438e–450e (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Masumoto, A. et al. Suppression of coronary artery spasm by the Rho-kinase inhibitor fasudil in patients with vasospastic angina. Circulation 105, 1545–1547 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Shibuya, M., Hirai, S., Seto, M., Satoh, S. & Ohtomo, E. Effects of fasudil in acute ischemic stroke: results of a prospective placebo-controlled double-blind trial. J. Neurol. Sci. 238, 31–39 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Wan, S. et al. FAK- and YAP/TAZ dependent mechanotransduction pathways are required for enhanced immunomodulatory properties of adipose-derived mesenchymal stem cells induced by aligned fibrous scaffolds. Biomaterials 171, 107–117 (2018).

    Article  CAS  PubMed  Google Scholar 

  36. Eichholz, K. F. & Hoey, D. A. Mediating human stem cell behaviour via defined fibrous architectures by melt electrospinning writing. Acta Biomater. 75, 140–151 (2018).

    Article  CAS  PubMed  Google Scholar 

  37. Fearing, B. V., Hernandez, P. A., Setton, L. A. & Chahine, N. O. Mechanotransduction and cell biomechanics of the intervertebral disc. JOR Spine 1, e1026 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Likhitpanichkul, M. et al. Do mechanical strain and TNF-α interact to amplify pro-inflammatory cytokine production in human annulus fibrosus cells? J. Biomech. 49, 1214–1220 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Tisherman, R. et al. NF-κB signaling pathway in controlling intervertebral disk cell response to inflammatory and mechanical stressors. Phys. Ther. 96, 704–711 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Cooper, R. G. et al. Herniated intervertebral disc-associated periradicular fibrosis and vascular abnormalities occur without inflammatory cell infiltration. Spine 20, 591–598 (1995).

    Article  CAS  PubMed  Google Scholar 

  41. Arnoczky, S. P. et al. Loss of homeostatic strain alters mechanostat “set point” of tendon cells in vitro. Clin. Orthop. Relat. Res. 466, 1583–1591 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Gardner, K., Lavagnino, M., Egerbacher, M. & Arnoczky, S. P. Re-establishment of cytoskeletal tensional homeostasis in lax tendons occurs through an actin-mediated cellular contraction of the extracellular matrix. J. Orthop. Res. 30, 1695–1701 (2012).

    Article  CAS  PubMed  Google Scholar 

  43. Lavagnino, M. & Arnoczky, S. P. In vitro alterations in cytoskeletal tensional homeostasis control gene expression in tendon cells. J. Orthop. Res. 23, 1211–1218 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Borde, B., Grunert, P., Härtl, R. & Bonassar, L. J. Injectable, high-density collagen gels for annulus fibrosus repair: an in vitro rat tail model. J. Biomed. Mater. Res. Part A 103, 2571–2581 (2015).

    Article  CAS  Google Scholar 

  45. Sloan, S. R. et al. Initial investigation of individual and combined annulus fibrosus and nucleus pulposus repair ex vivo. Acta Biomater. 59, 192–199 (2017).

    Article  CAS  PubMed  Google Scholar 

  46. Gullbrand, S. E. et al. Translation of an injectable triple-interpenetrating-network hydrogel for intervertebral disc regeneration in a goat model. Acta Biomater. 60, 201–209 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chang, G., Kim, H. J., Vunjak-Novakovic, G., Kaplan, D. L. & Kandel, R. Enhancing annulus fibrosus tissue formation in porous silk scaffolds. J. Biomed. Mater. Res. Part A 92A, 43–51 (2010).

    Article  CAS  Google Scholar 

  48. Séguin, C. A., Grynpas, M. D., Pilliar, R. M., Waldman, S. D. & Kandel, R. A. Tissue engineered nucleus pulposus tissue formed on a porous calcium polyphosphate substrate. Spine 29, 1299–1306 (2004).

    Article  PubMed  Google Scholar 

  49. Desai, R. A., Rodriguez, N. M. & Chen, C. S. in Methods in Cell Biology Vol. 119 (eds Piel, M. & Théry, M.) Ch. 1 (Elsevier, 2014).

Download references

Acknowledgements

This study was supported by the United States National Institutes of Health (grant nos. F32 AR072478, R01 EB02425, T32 AR053461 and P30 AR050950), the United States Department of Veteran’s Affairs (grant nos. I01 RX002274 and IK1 RX002445), the Ministry of Science and Technology, Taiwan (grant nos. MOST107-2918-I-002-024 and MOST107-2221-E-002-071-MY2) and the Taiwan National Health Research Institute (grant no. NHRI-EX107-10411EI). Additional support was provided by the Unites States National Science Foundation via the NSF Science and Technology Center for Engineering Mechanobiology (grant no. CMMI-1548571). The authors thank D. Mason and J. Boerkel for their assistance with traction force microscopy and C. Loebel and J. Burdick for their assistance with FUNCAT labelling of nascent matrix.

Author information

Authors and Affiliations

Authors

Contributions

E.D.B., H.E.S., D.M.E. and R.L.M. conceived and designed the experiments. E.D.B., S.E.G., B.G.A., T.K.T., P.G.C. and H.E.S. performed the experiments. E.D.B., S.E.G. and B.G.A. analysed the data. T.K.T. and P.G.C. contributed materials/analysis tools. E.D.B. and R.L.M. wrote the manuscript. E.D.B., S.E.G., B.G.A., T.K.T., D.M.E., P.G.C., H.E.S. and R.L.M. edited the manuscript.

Corresponding author

Correspondence to Robert L. Mauck.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary figures.

Reporting Summary

Supplementary Video 1

Calcium transients on cells seeded on scaffolds.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonnevie, E.D., Gullbrand, S.E., Ashinsky, B.G. et al. Aberrant mechanosensing in injured intervertebral discs as a result of boundary-constraint disruption and residual-strain loss. Nat Biomed Eng 3, 998–1008 (2019). https://doi.org/10.1038/s41551-019-0458-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41551-019-0458-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing