Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A nanoelectrode array for obtaining intracellular recordings from thousands of connected neurons


Current electrophysiological or optical techniques cannot reliably perform simultaneous intracellular recordings from more than a few tens of neurons. Here we report a nanoelectrode array that can simultaneously obtain intracellular recordings from thousands of connected mammalian neurons in vitro. The array consists of 4,096 platinum-black electrodes with nanoscale roughness fabricated on top of a silicon chip that monolithically integrates 4,096 microscale amplifiers, configurable into pseudocurrent-clamp mode (for concurrent current injection and voltage recording) or into pseudovoltage-clamp mode (for concurrent voltage application and current recording). We used the array in pseudovoltage-clamp mode to measure the effects of drugs on ion-channel currents. In pseudocurrent-clamp mode, the array intracellularly recorded action potentials and postsynaptic potentials from thousands of neurons. In addition, we mapped over 300 excitatory and inhibitory synaptic connections from more than 1,700 neurons that were intracellularly recorded for 19 min. This high-throughput intracellular-recording technology could benefit functional connectome mapping, electrophysiological screening and other functional interrogations of neuronal networks.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The CNEI.
Fig. 2: Intracellular recording and stimulation of disassociated rat neurons using the pCC and pVC configurations.
Fig. 3: Network-wide intracellular measurements of dissociated rat neurons in the pCC configuration.
Fig. 4: Measurement of chemical synapse characteristics and network-wide mapping of synaptic connectivity with the pCC configuration.

Data availability

The authors declare that all data supporting the findings of this study are available within the paper and its Supplementary Information.


  1. Sasaki, T., Minamisawa, G., Takahashi, N., Matsuki, N. & Ikegaya, Y. Reverse optical trawling for synaptic connections in situ. J. Neurophysiol. 102, 636–643 (2009).

    CAS  PubMed  Google Scholar 

  2. Petreanu, L., Huber, D., Sobczyk, A. & Svoboda, K. Channelrhodopsin-2-assisted circuit mapping of long-range callosal projections. Nat. Neurosci. 10, 663–668 (2007).

    CAS  PubMed  Google Scholar 

  3. Shemesh, O. A. et al. Temporally precise single-cell-resolution optogenetics. Nat. Neurosci. 20, 1796–1806 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Jäckel, D. et al. Combination of high-density microelectrode array and patch clamp recordings to enable studies of multisynaptic integration. Sci. Rep. 7, 978 (2017).

    PubMed  PubMed Central  Google Scholar 

  5. Spira, M. E. & Hai, A. Multi-electrode array technologies for neuroscience and cardiology. Nat. Nanotech. 8, 83–94 (2013).

    CAS  Google Scholar 

  6. Perin, R., Berger, T. K. & Markram, H. A synaptic organizing principle for cortical neuronal groups. Proc. Natl Acad. Sci. USA 108, 5419–5424 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Robinson, J. T. et al. Vertical nanowire electrode arrays as a scalable platform for intracellular interfacing to neuronal circuits. Nat. Nanotech. 7, 180–184 (2012).

    CAS  Google Scholar 

  8. Abbott, J. et al. CMOS nanoelectrode array for all-electrical intracellular electrophysiological imaging. Nat. Nanotech. 12, 460–466 (2017).

    CAS  Google Scholar 

  9. Eversmann, B. et al. A 128 × 128 CMOS Biosensor array for extracellular recording of neural activity. IEEE J. Solid-State Circuits 38, 2306–2317 (2003).

    Google Scholar 

  10. Berdondini, L. et al. Active pixel sensor array for high spatio-temporal resolution electrophysiological recordings from single cell to large scale neuronal networks. Lab Chip 9, 2644–2651 (2009).

    CAS  PubMed  Google Scholar 

  11. Frey, U. et al. Switch-matrix-based high-density microelectrode array in CMOS technology. IEEE J. Solid-State Circuits 45, 467–482 (2010).

    Google Scholar 

  12. Tsai, D., Sawyer, D., Bradd, A., Yuste, R. & Shepard, K. L. A very large-scale microelectrode array for cellular-resolution electrophysiology. Nat. Commun. 8, 1802 (2017).

    PubMed  PubMed Central  Google Scholar 

  13. Lopez, C. M. et al. A 16,384-electrode 1,024-channel multimodal CMOS MEA for high-throughput intracellular action potential measurements and impedance spectroscopy in drug-screening applications. In IEEE International Solid-State Circuits Conference (eds Anderson, J. H. et al.) 61, 464–466 (IEEE, 2018).

  14. Fertig, N., Blick, R. H. & Behrends, J. C. Whole cell patch clamp recording performed on a planar glass chip. Biophys. J. 82, 3056–3062 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Lau, A. Y., Hung, P. J., Wu, A. R. & Lee, L. P. Open-access microfluidic patch-clamp array with raised lateral cell trapping sites. Lab Chip 6, 1510–1515 (2006).

    CAS  PubMed  Google Scholar 

  16. Dunlop, J., Bowlby, M., Peri, R., Vasilyev, D. & Arias, R. High-throughput electrophysiology: an emerging paradigm for ion-channel screening and physiology. Nat. Rev. Drug Discov. 7, 358–368 (2008).

    CAS  PubMed  Google Scholar 

  17. Hochbaum, D. R. et al. All-optical electrophysiology in mammalian neurons using engineered microbial rhodopsins. Nat. Methods 11, 825–833 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Kim, C. K., Adhikari, A. & Deisseroth, K. Integration of optogenetics with complementary methodologies in systems neuroscience. Nat. Rev. Neurosci. 18, 222–235 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Ikegaya, Y. et al. Synfire chains and cortical songs: temporal modules of cortical activity. Science 304, 559–564 (2004).

    CAS  PubMed  Google Scholar 

  20. Stetter, O., Battaglia, D., Soriano, J. & Geisel, T. Model-free reconstruction of excitatory neuronal connectivity from calcium imaging signals. PLoS Comput. Biol. 8, e1002653 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Ahrens, M. B. et al. Brain-wide neuronal dynamics during motor adaptation in zebrafish. Nature 485, 471–477 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Akerboom, J. et al. Optimization of a GCaMP calcium indicator for neural activity imaging. J. Neurosci. 32, 13819–13840 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Gong, Y. et al. High-speed recording of neural spikes in awake mice and flies with a fluorescent voltage sensor. Science 350, 1361–1366 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Woodford, C. R. et al. Improved PeT molecules for optically sensing voltage in neurons. J. Am. Chem. Soc. 137, 1817–1824 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Lou, S. et al. Genetically targeted all-optical electrophysiology with a transgenic cre-dependent optopatch mouse. J. Neurosci. 36, 11059–11073 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Li, L.-L. et al. Morphological control of platinum nanostructures for highly efficient dye-sensitized solar cells. J. Mater. Chem. 22, 6267 (2012).

    CAS  Google Scholar 

  27. Dipalo, M. et al. Intracellular and extracellular recording of spontaneous action potentials in mammalian neurons and cardiac cells with 3D plasmonic nanoelectrodes. Nano Lett. 17, 3932–3939 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Lin, Z. C., Xie, C., Osakada, Y., Cui, Y. & Cui, B. Iridium oxide nanotube electrodes for sensitive and prolonged intracellular measurement of action potentials. Nat. Commun. 5, 3206 (2014).

    PubMed  Google Scholar 

  29. Hai, A., Shappir, J. & Spira, M. E. In-cell recordings by extracellular microelectrodes. Nat. Methods 7, 200–202 (2010).

    CAS  PubMed  Google Scholar 

  30. Liu, R. et al. High density individually addressable nanowire arrays record intracellular activity from primary rodent and human stem cell derived neurons. Nano Lett. 17, 2757–2764 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Fromherz, P. Self-gating of ion channels in cell adhesion. Phys. Rev. Lett. 78, 4131–4134 (1997).

    CAS  Google Scholar 

  32. Obien, M. E. J., Deligkaris, K., Bullmann, T., Bakkum, D. J. & Frey, U. Revealing neuronal function through microelectrode array recordings. Front. Neurosci. 9, 423 (2015).

    Google Scholar 

  33. Massobrio, P., Tessadori, J., Chiappalone, M. & Ghirardi, M. In vitro studies of neuronal networks and synaptic plasticity in invertebrates and in mammals using multielectrode arrays. Neural Plast. 2015, 1–18 (2015).

    Google Scholar 

  34. Froemke, R. C., Debanne, D. & Bi, G.-Q. Temporal modulation of spike-timing-dependent plasticity. Front. Syn. Neurosci. 2, 19 (2010).

    Google Scholar 

  35. Hai, A. & Spira, M. E. On-chip electroporation, membrane repair dynamics and transient in-cell recordings by arrays of gold mushroom-shaped microelectrodes. Lab Chip 12, 2865–2873 (2012).

    CAS  PubMed  Google Scholar 

  36. Xie, C., Lin, Z., Hanson, L., Cui, Y. & Cui, B. Intracellular recording of action potentials by nanopillar electroporation. Nat. Nanotech. 7, 185–190 (2012).

    CAS  Google Scholar 

  37. Duan, X. et al. Intracellular recordings of action potentials by an extracellular nanoscale field-effect transistor. Nat. Nanotechnol. 7, 174–179 (2012).

    CAS  Google Scholar 

  38. Lee, K.-Y. et al. Vertical nanowire probes for intracellular signaling of living cells. Nanoscale Res. Lett. 9, 56 (2014).

    PubMed  PubMed Central  Google Scholar 

  39. Tian, B. et al. Three-dimensional, flexible nanoscale field-effect transistors as localized bioprobes. Science 329, 830–834 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Hai, A., Shappir, J. & Spira, M. E. Long-term, multisite, parallel, in-cell recording and stimulation by an array of extracellular microelectrodes. J. Neurophysiol. 104, 559–568 (2010).

    CAS  PubMed  Google Scholar 

  41. Shmoel, N. et al. Multisite electrophysiological recordings by self-assembled loose-patch-like junctions between cultured hippocampal neurons and mushroom-shaped microelectrodes. Sci. Rep. 6, 27110 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Fitzsimonds, R. M., Song, H. J. & Poo, M. M. Propagation of activity-dependent synaptic depression in simple neural networks. Nature 388, 439–448 (1997).

    CAS  PubMed  Google Scholar 

  43. Kullmann, D. M. & Nicoll, R. A. Long-term potentiation is associated with increases in quantal content and quantal amplitude. Nature 357, 240–244 (1992).

    CAS  PubMed  Google Scholar 

  44. Hardingham, N. R. et al. Quantal analysis reveals a functional correlation between presynaptic and postsynaptic efficacy in excitatory connections from rat neocortex. J. Neurosci. 30, 1441–1451 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Shein-Idelson, M., Pammer, L., Hemberger, M. & Laurent, G. Large-scale mapping of cortical synaptic projections with extracellular electrode arrays. Nat. Methods 14, 882–890 (2017).

    CAS  PubMed  Google Scholar 

  46. Sabatini, B. L. & Regehr, W. G. Timing of neurotransmission at fast synapses in the mammalian brain. Nature 384, 170–172 (1996).

    CAS  PubMed  Google Scholar 

  47. Barthó, P. et al. Characterization of neocortical principal cells and interneurons by network interactions and extracellular features. J. Neurophysiol. 92, 600–608 (2004).

    PubMed  Google Scholar 

Download references


Post-fabrication and characterization were performed, in part, at the Center for Nanoscale Systems at Harvard University. The authors are grateful for the support of this research by Samsung Advanced Institute of Technology, Samsung Electronics (A37734 to H.P. and D.H.), Catalyst Foundation (J.A., H.P. and D.H.), the Army Research Office (W911NF-15-1-0565 to D.H.), the Army Research Office (W911NF-17-1-0425 to D.H.), the National Science Foundation Graduate Research Fellowship Program (DGE1745303 to K.K.), the National Institutes of Health (1-U01-MH105960-01 to H.P.), the Gordon and Betty Moore Foundation (to H.P.), and the US Army Research Laboratory and the US Army Research Office (W911NF1510548 to H.P.).

Author information

Authors and Affiliations



H.P., D.H., J.A., T.Y. and K.K. conceived and designed the experiments. J.A. and L.Q. designed the CMOS IC, J.A., Y.K. and W.W. designed the interface electronics and T.Y., S.B. and K.K. performed post-fabrication and device packaging. J.A., T.Y., K.K. and R.S.G. performed the experiments and J.A., T.Y., K.K., H.P. and D.H. analysed the data. H.P. and D.H. supervised the project. J.A., T.Y., K.K., D.H. and H.P. wrote the manuscript, and all authors read and discussed it.

Corresponding authors

Correspondence to Hongkun Park or Donhee Ham.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary figures, tables, discussion, references and video captions.

Reporting Summary

Supplementary Video 1

Intracellular recordings of neuronal action potentials across a connected network. Large network bursts involving 1,837 pixels.

Supplementary Video 2

Intracellular recordings of neuronal action potentials across a connected network. Large network bursts involving 1,882 pixels.

Supplementary Video 3

Intracellular stimulation across a neuronal network.

Supplementary Video 4

Intracellular mapping of depolarization potential propagations on the application of a drug.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbott, J., Ye, T., Krenek, K. et al. A nanoelectrode array for obtaining intracellular recordings from thousands of connected neurons. Nat Biomed Eng 4, 232–241 (2020).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing