Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Spatially selective activation of the visual cortex via intraneural stimulation of the optic nerve

Abstract

Retinal prostheses can restore a functional form of vision in patients affected by dystrophies of the outer retinal layer. Beyond clinical utility, prostheses for the stimulation of the optic nerve, the visual thalamus or the visual cortex could also serve as tools for studying the visual system. Optic-nerve stimulation is particularly promising because it directly activates nerve fibres, takes advantage of the high-level information processing occurring downstream in the visual pathway, does not require optical transparency and could be effective in cases of eye trauma. Here we show, in anaesthetized rabbits and with support from numerical modelling, that an intraneural electrode array with high mechanical stability placed in the intracranial segment of the optic nerve induces, on electrical stimulation, selective activation patterns in the visual cortex. These patterns are measured as electrically evoked cortical potentials via an ECoG array placed in the contralateral cortex. The intraneural electrode array should enable further investigations of the effects of electrical stimulation in the visual system and could be further developed as a visual prosthesis for blind patients.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: The intraneural electrode array OpticSELINE.
Fig. 2: Electrochemical and mechanical characterization.
Fig. 3: Visually evoked cortical potentials.
Fig. 4: Electrically evoked cortical potentials.
Fig. 5: Cortical activation maps.
Fig. 6: Distribution map of the independent components within the optic nerve.
Fig. 7: Probability activation map of the optic nerve.
Fig. 8: High-frequency stimulation of the optic nerve.

Data availability

The authors declare that all data supporting the results in this study are available within the paper and its Supplementary Information. The raw and analysed datasets generated during the study are available for research purposes from the corresponding author on reasonable request.

Code availability

Code used for the hybrid FEA model and NEURON simulation is available at https://github.com/lne-lab/nBME2019. The authors declare that the algorithm used for blind source separation is described in the referenced papers. The source code can be obtained from S.M. (silvestro.micera@epfl.ch) upon reasonable request.

References

  1. 1.

    Bourne, R. R. et al. Causes of vision loss worldwide, 1990–2010: a systematic analysis. Lancet Glob. Health 1, e339–e349 (2013).

    PubMed  Google Scholar 

  2. 2.

    Brindley, G. & Lewin, W. The sensations produced by electrical stimulation of the visual cortex. J. Physiol. 196, 479–493 (1968).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Dobelle, W., Mladejovsky, M. & Girvin, J. Artificial vision for the blind: Electrical stimulation of visual cortex offers hope for a functional prosthesis. Science 183, 440–444 (1974).

    CAS  PubMed  Google Scholar 

  4. 4.

    Zrenner, E. Fighting blindness with microelectronics. Sci. Transl. Med. 5, 210ps16 (2013).

    PubMed  Google Scholar 

  5. 5.

    Ghezzi, D. Retinal prostheses: progress toward the next generation implants. Front. Neurosci. 9, 290 (2015).

    PubMed  PubMed Central  Google Scholar 

  6. 6.

    Stingl, K. et al. Artificial vision with wirelessly powered subretinal electronic implant alpha-IMS. Proc. R. Soc. B 280, 20130077 (2013).

    PubMed  Google Scholar 

  7. 7.

    da Cruz, L. et al. Five-year safety and performance results from the Argus II retinal prosthesis system clinical trial. Ophthalmology 123, 2248–2254 (2016).

    PubMed  PubMed Central  Google Scholar 

  8. 8.

    Ayton, L. N. et al. First-in-human trial of a novel suprachoroidal retinal prosthesis. PLoS ONE 9, e115239 (2014).

    Google Scholar 

  9. 9.

    Brelén, M. E., Vince, V., Gérard, B., Veraart, C. & Delbeke, J. Measurement of evoked potentials after electrical stimulation of the human optic nerve. Invest. Ophthalmol. Vis. Sci. 51, 5351–5355 (2010).

    PubMed  Google Scholar 

  10. 10.

    Panetsos, F., Sanchez-Jimenez, A., Cerio, E., Diaz-Guemes, I. & Sanchez, F. M. Consistent phosphenes generated by electrical microstimulation of the visual thalamus. An experimental approach for thalamic visual neuroprostheses. Front. Neurosci. 5, 84 (2011).

    PubMed  PubMed Central  Google Scholar 

  11. 11.

    Normann, R. A. et al. Toward the development of a cortically based visual neuroprosthesis. J. Neural Eng. 6, 035001 (2009).

    PubMed  PubMed Central  Google Scholar 

  12. 12.

    Merabet, L. B., Rizzo, J. F., Amedi, A., Somers, D. C. & Pascual-Leone, A. What blindness can tell us about seeing again: merging neuroplasticity and neuroprostheses. Nat. Rev. Neurosci. 6, 71–77 (2005).

    CAS  PubMed  Google Scholar 

  13. 13.

    Luo, Y. & da Cruz, L. The Argus II retinal prosthesis system. Prog. Retin. Eye Res. 50, 89–107 (2016).

    PubMed  Google Scholar 

  14. 14.

    Stingl, K. et al. Subretinal visual implant Alpha IMS—Clinical trial interim report. Vis. Res. 111, 149–160 (2015).

    PubMed  Google Scholar 

  15. 15.

    Lorach, H. et al. Photovoltaic restoration of sight with high visual acuity. Nat. Med. 21, 476–482 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Ferlauto, L. et al. Design and validation of a foldable and photovoltaic wide-field epiretinal prosthesis. Nat. Commun. 9, 992 (2018).

    PubMed  PubMed Central  Google Scholar 

  17. 17.

    Antognazza, M. et al. Shedding light on living cells. Adv. Mater. 27, 7662–7669 (2015).

    CAS  PubMed  Google Scholar 

  18. 18.

    Maya-Vetencourt, J. et al. A fully organic retinal prosthesis restores vision in a rat model of degenerative blindness. Nat. Mater. 16, 681–689 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Antognazza, M. et al. Characterization of a polymer‐based, fully organic prosthesis for implantation into the subretinal space of the rat. Adv. Health. Mater. 5, 2271–2282 (2016).

    CAS  Google Scholar 

  20. 20.

    Veraart, C. et al. Visual sensations produced by optic nerve stimulation using an implanted self-sizing spiral cuff electrode. Brain Res. 813, 181–186 (1998).

    CAS  PubMed  Google Scholar 

  21. 21.

    Brelén, M. E. et al. Intraorbital implantation of a stimulating electrode for an optic nerve visual prosthesis. J. Neurosur. 104, 593–597 (2006).

    Google Scholar 

  22. 22.

    Duret, F. et al. Object localization, discrimination, and grasping with the optic nerve visual prosthesis. Restor. Neurol. Neurosci. 24, 31–40 (2006).

    PubMed  Google Scholar 

  23. 23.

    Veraart, C., Wanet‐Defalque, M., Gérard, B., Vanlierde, A. & Delbeke, J. Pattern recognition with the optic nerve visual prosthesis. Artif. Organs 27, 996–1004 (2003).

    PubMed  Google Scholar 

  24. 24.

    Brelén, M., Duret, F., Gérard, B., Delbeke, J. & Veraart, C. Creating a meaningful visual perception in blind volunteers by optic nerve stimulation. J. Neural Eng. 2, S22 (2005).

    PubMed  Google Scholar 

  25. 25.

    The Lasker/IRRF Initiative for Innovation in Vision Science. Chapter 1 - Restoring vision to the blind: The new age of implanted visual prostheses. Transl. Vis. Sci. Technol. https://doi.org/10.1167/tvst.3.7.3 (2014).

  26. 26.

    Yan, Y. et al. Electrically evoked responses in the rabbit cortex induced by current steering with penetrating optic nerve electrodes. Invest. Ophthalmol. Vis. Sci. 57, 6327–6338 (2016).

    CAS  PubMed  Google Scholar 

  27. 27.

    Sun, J., Chen, Y., Chai, X., Ren, Q. & Li, L. Penetrating electrode stimulation of the rabbit optic nerve: parameters and effects on evoked cortical potentials. Graefes Arch. Clin. Exp. Ophthalmol. 251, 2545–2554 (2013).

    PubMed  Google Scholar 

  28. 28.

    Lu, Y. et al. Electrical stimulation with a penetrating optic nerve electrode array elicits visuotopic cortical responses in cats. J. Neural Eng. 10, 036022 (2013).

    PubMed  Google Scholar 

  29. 29.

    Raspopovic, S. et al. Restoring natural sensory feedback in real-time bidirectional hand prostheses. Sci. Transl. Med. 6, 222ra19–222ra19 (2014).

    PubMed  Google Scholar 

  30. 30.

    Oddo, C. et al. Intraneural stimulation elicits discrimination of textural features by artificial fingertip in intact and amputee humans. eLife 5, e09148 (2016).

    PubMed  PubMed Central  Google Scholar 

  31. 31.

    Raspopovic, S., Capogrosso, M., Badia, J., Navarro, X. & Micera, S. Experimental validation of a hybrid computational model for selective stimulation using transverse intrafascicular multichannel electrodes. IEEE Trans. Neural Syst. Rehabil. Eng. 20, 395–404 (2012).

    PubMed  Google Scholar 

  32. 32.

    Badia, J. et al. Comparative analysis of transverse intrafascicular multichannel, longitudinal intrafascicular and multipolar cuff electrodes for the selective stimulation of nerve fascicles. J. Neural Eng. 8, 036023 (2011).

    PubMed  Google Scholar 

  33. 33.

    Cutrone, A. et al. A three-dimensional self-opening intraneural peripheral interface (SELINE). J. Neural Eng. 12, 016016 (2015).

    CAS  PubMed  Google Scholar 

  34. 34.

    Wurth, S. et al. Long-term usability and bio-integration of polyimide-based intra-neural stimulating electrodes. Biomaterials 122, 114–129 (2017).

    CAS  PubMed  Google Scholar 

  35. 35.

    Hukins, D. W. L., Mahomed, A. & Kukureka, S. N. Accelerated aging for testing polymeric biomaterials and medical devices. Med. Eng. Phys. 30, 1270–1274 (2008).

    CAS  PubMed  Google Scholar 

  36. 36.

    Howlader, M., Doyle, T., Mohtashami, S. & Kish, J. Charge transfer and stability of implantable electrodes on flexible substrate. Sens. Actuators B Chem. 178, 132–139 (2013).

    CAS  Google Scholar 

  37. 37.

    Giolli, R. & Guthrie The primary optic projections in the rabbit. An experimental degeneration study. J. Com. Neurol. 136, 99–126 (1969).

    CAS  Google Scholar 

  38. 38.

    Sun, J. et al. Spatiotemporal properties of multipeaked electrically evoked potentials elicited by penetrative optic nerve stimulation in rabbits. Invest. Ophthalmol. Vis. Sci. 52, 146–154 (2011).

    PubMed  Google Scholar 

  39. 39.

    Delorme, A., Palmer, J., Onton, J., Oostenveld, R. & Makeig, S. Independent EEG sources are dipolar. PLoS ONE 7, e30135 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Menicucci, D. et al. Brain responses to emotional stimuli during breath holding and hypoxia: an approach based on the independent component analysis. Brain Topogr. 27, 771–785 (2014).

    PubMed  Google Scholar 

  41. 41.

    Artoni, F. et al. Unidirectional brain to muscle connectivity reveals motor cortex control of leg muscles during stereotyped walking. NeuroImage 159, 403–416 (2017).

    PubMed  PubMed Central  Google Scholar 

  42. 42.

    Bell, A. & Sejnowski, T. An information-maximization approach to blind separation and blind deconvolution. Neural Comput. 7, 1129–1159 (1995).

    CAS  Google Scholar 

  43. 43.

    Delbeke, J., Oozeer, M. & Veraart, C. Position, size and luminosity of phosphenes generated by direct optic nerve stimulation. Vis. Res. 43, 1091–1102 (2003).

    PubMed  Google Scholar 

  44. 44.

    Li, M. et al. A simulation of current focusing and steering with penetrating optic nerve electrodes. J. Neural Eng. 10, 066007 (2013).

    PubMed  Google Scholar 

  45. 45.

    Ghezzi, D. et al. A polymer optoelectronic interface restores light sensitivity in blind rat retinas. Nat. Photonics 7, 400–406 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Mathieson, K. et al. Photovoltaic retinal prosthesis with high pixel density. Nat. Photonics 6, 391–397 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Mandel, Y. et al. Cortical responses elicited by photovoltaic subretinal prostheses exhibit similarities to visually evoked potentials. Nat. Commun. 4, 1980 (2013).

    PubMed  PubMed Central  Google Scholar 

  48. 48.

    Tang, J. et al. Nanowire arrays restore vision in blind mice. Nat. Commun. 9, 786 (2018).

    PubMed  PubMed Central  Google Scholar 

  49. 49.

    Sakaguchi, H. et al. Artificial vision by direct optic nerve electrode (AV-DONE) implantation in a blind patient with retinitis pigmentosa. J. Artif. Organs 12, 206–209 (2009).

    PubMed  Google Scholar 

  50. 50.

    Boinagrov, D., Pangratz-Fuehrer, S., Goetz, G. & Palanker, D. Selectivity of direct and network-mediated stimulation of the retinal ganglion cells with epi-, sub- and intraretinal electrodes. J. Neural Eng. 11, 026008 (2014).

    PubMed  PubMed Central  Google Scholar 

  51. 51.

    Weiland, J. D., Walston, S. T. & Humayun, M. S. Electrical stimulation of the retina to produce artificial vision. Annu. Rev. Vis. Sci. 2, 273–294 (2016).

    PubMed  Google Scholar 

  52. 52.

    Nirenberg, S. & Pandarinath, C. Retinal prosthetic strategy with the capacity to restore normal vision. Proc. Natl Acad. Sci. USA 109, 15012–15017 (2012).

    CAS  PubMed  Google Scholar 

  53. 53.

    Piedade, M., Gerald, J., Sousa, L., Tavares, G. & Tomás, P. Visual neuroprosthesis: a non invasive system for stimulating the cortex. IEEE Trans. Circuits Syst. I 52, 2648–2662 (2005).

    Google Scholar 

  54. 54.

    Sieu, L.-A. A. et al. EEG and functional ultrasound imaging in mobile rats. Nat. Methods 12, 831–834 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Demene, C. et al. Functional ultrasound imaging of brain activity in human newborns. Sci. Transl. Med. 9, eaah6756 (2017).

    PubMed  Google Scholar 

  56. 56.

    Blaize, K. et al. Functional ultrasound imaging of deep visual cortex in awake non-human primates. Preprint at Biorxiv https://doi.org/10.1101/551663 (2019).

  57. 57.

    Palmer, J. A., Kreutz-Delgado, K., Rao, B. D. & Makeig, S. in Independent Component Analysis and Signal Separation (eds Davies M.E. et al.) 90–97 (Springer, 2007).

  58. 58.

    Artoni, F., Menicucci, D., Delorme, A., Makeig, S. & Micera, S. RELICA: a method for estimating the reliability of independent components. NeuroImage 103, 391–400 (2014).

    PubMed  PubMed Central  Google Scholar 

  59. 59.

    Artoni, F., Delorme, A. & Makeig, S. Applying dimension reduction to EEG data by principal component analysis reduces the quality of its subsequent independent component decomposition. NeuroImage 175, 176–187 (2018).

    PubMed  PubMed Central  Google Scholar 

  60. 60.

    Goodall, E. V., Kosterman, L. M., Holsheimer, J. & Struijk, J. J. Modeling study of activation and propagation delays during stimulation of peripheral nerve fibers with a tripolar cuff electrode. IEEE Trans. Rehabil. Eng. 3, 272–282 (1995).

    Google Scholar 

  61. 61.

    Chintalacharuvu, R. R., Ksienski, D. A. & Mortimer, J. T. A numerical analysis of the electric field generated by a nerve cuff electrode. Proc. Annual International Conference of the IEEE Engineering in Medicine and Biology Society 912-913 (IEEE, 1991).

  62. 62.

    Struijk, J. J., Holsheimer, J., Barolat, G., He, J. & Boom, H. B. K. Paresthesia thresholds in spinal cord stimulation: a comparison of theoretical results with clinical data. IEEE Trans. Rehabil. Eng. 1, 101–108 (1993).

    Google Scholar 

  63. 63.

    Bossetti, C. A., Birdno, M. J. & Grill, W. M. Analysis of the quasi-static approximation for calculating potentials generated by neural stimulation. J. Neural Eng. 5, 44 (2008).

    PubMed  Google Scholar 

  64. 64.

    McIntyre, C. C. & Grill, W. M. Extracellular stimulation of central neurons: influence of stimulus waveform and frequency on neuronal output. J. Neurophysiol. 88, 1592–1604 (2002).

    PubMed  Google Scholar 

  65. 65.

    Raspopovic, S., Capogrosso, M. & Micera, S. A computational model for the stimulation of rat sciatic nerve using a transverse intrafascicular multichannel electrode. IEEE Trans. Neural Syst. Rehabil. Eng. 19, 333–344 (2011).

    PubMed  Google Scholar 

  66. 66.

    Hodgkin, A. & Huxley, A. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. 67.

    Oozeer, M., Veraart, C., Legat, V. & Delbeke, J. A model of the mammalian optic nerve fibre based on experimental data. Vis. Res. 46, 2513–2524 (2006).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the support from the Bioelectron Microscopy Core Facility (BIOEM) of École polytechnique fédérale de Lausanne. This work has been supported by École polytechnique fédérale de Lausanne, Medtronic, Bertarelli Foundation and Wyss Center for Bio and Neuroengineering. F.A. is supported by the European Union’s Horizon 2020 research and innovation programme under Marie Skłodowska-Curie Action agreement no. 750947 (BIREHAB).

Author information

Affiliations

Authors

Contributions

V.G. designed the stimulation protocol and performed the modelling and simulation, blind source separation and data analysis. A.C. designed and fabricated the OpticSELINE and performed mechanical and electrochemical characterizations. F.A. conceived and performed the blind source separation approach. P.V. performed in vivo and histological experiments. A.M.P. performed the modelling and simulation. S.A.R. participated in the design of the stimulation protocol and data analysis. D.L.D.P. participated in the design and microfabrication of the OpticSELINE and performed mechanical characterizations. S.M. supervised the activities related to electrode development and the blind source separation approach. D.G. designed the study, led the project and wrote the manuscript. All the authors read, edited, and accepted the manuscript.

Corresponding author

Correspondence to Diego Ghezzi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gaillet, V., Cutrone, A., Artoni, F. et al. Spatially selective activation of the visual cortex via intraneural stimulation of the optic nerve. Nat Biomed Eng 4, 181–194 (2020). https://doi.org/10.1038/s41551-019-0446-8

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing