Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Use of a supramolecular polymeric hydrogel as an effective post-operative pericardial adhesion barrier


Post-operative adhesions form as a result of normal wound healing processes following any type of surgery. In cardiac surgery, pericardial adhesions are particularly problematic during reoperations, as surgeons must release the adhesions from the surface of the heart before the intended procedure can begin, thereby substantially lengthening operation times and introducing risks of haemorrhage and injury to the heart and lungs during sternal re-entry and cardiac dissection. Here we show that a dynamically crosslinked supramolecular polymer–nanoparticle hydrogel, with viscoelastic and flow properties that enable spraying onto tissue as well as robust tissue adherence and local retention in vivo for two weeks, reduces the formation of pericardial adhesions. In a rat model of severe pericardial adhesions, the hydrogel markedly reduced the severity of the adhesions, whereas commercial adhesion barriers (including Seprafilm and Interceed) did not. The hydrogels also reduced the severity of cardiac adhesions (relative to untreated animals) in a clinically relevant cardiopulmonary-bypass model in sheep. This viscoelastic supramolecular polymeric hydrogel represents a promising clinical solution for the prevention of post-operative pericardial adhesions.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of PNP hydrogel adhesion barrier.
Fig. 2: Mechanical characterization of PNP hydrogel adhesion barrier.
Fig. 3: Prevention of pericardial adhesion in a rat model.
Fig. 4: In vivo retention of PNP hydrogel adhesion barrier.
Fig. 5: Prevention of adhesion in an epicardial abrasion model in sheep.
Fig. 6: Sheep cardiopulmonary bypass and aortotomy model.

Data availability

The main data supporting the results in this study are available within the paper and its Supplementary Information. The raw and analysed datasets generated during the study are available for research purposes from the corresponding authors on reasonable request.


  1. Lauder, C. I., Garcea, G., Strickland, A. & Maddern, G. J. Abdominal adhesion prevention: still a sticky subject? Dig. Surg. 27, 347–358 (2010).

    Article  Google Scholar 

  2. Weibel, M. A. & Majno, G. Peritoneal adhesions and their relation to abdominal surgery. A postmortem study. Am. J. Surg. 126, 345–353 (1973).

    Article  CAS  Google Scholar 

  3. DiZerega, G. S. in Peritoneal Surgery (ed. DiZerega, G. S.) 3–37 (Springer, 2000).

  4. Ito, T. et al. The prevention of peritoneal adhesions by in situ cross-linking hydrogels of hyaluronic acid and cellulose derivatives. Biomaterials 28, 975–983 (2007).

    Article  CAS  Google Scholar 

  5. Yea, Y. et al. Prevention of peritoneal adhesions with an in situ cross-linkable hyaluronan hydrogel delivering budesonide. J. Control. Release 120, 178–185 (2007).

    Article  Google Scholar 

  6. Hirschelmann, A., Tchartchian, G., Wallwiener, M., Hackethal, A. & De Wilde, R. L. A review of the problematic adhesion prophylaxis in gynaecological surgery. Arch. Gynecol. Obstet. 285, 1089–1097 (2012).

    Article  Google Scholar 

  7. Shahian, D. M. et al. The society of thoracic surgeons 2008 cardiac surgery risk models: part 1—coronary artery bypass grafting surgery. Ann. Thorac. Surg. 88, S2–S22 (2009).

    Article  Google Scholar 

  8. O’Brien, S. M. et al. The Society of thoracic surgeons 2008 cardiac surgery risk models: part 2—isolated valve surgery. Ann. Thorac. Surg. 88, S23–S42 (2009).

    Article  Google Scholar 

  9. Kansara, P. et al. Heart transplantation with and without prior sternotomy: analysis of the united network for organ sharing database. Transpl. Proc. 46, 249–255 (2014).

    Article  CAS  Google Scholar 

  10. Hoffman, J. L. et al. The incidence of congenital heart disease. J. Am. Coll. Cardiol. 39, 1890–1900 (2002).

    Article  Google Scholar 

  11. Jacobsa, J. P. et al. Reoperations for pediatric and congenital heart disease: An analysis of the society of thoracic surgeons (STS) congenital heart surgery database. Semin. Thorac. Cardiovasc. Surg. Pediatr. Card. Surg. Annu. 17, 2–8 (2014).

    Article  Google Scholar 

  12. Sikirica, V. et al. The inpatient burden of abdominal and gynecological adhesiolysis in the US. BMC Surgery 11, 1–9 (2011).

    Article  Google Scholar 

  13. Diamond, M. P., Burns, E. L., Accomando, B., Mian, S. & Holmdahl, L. Seprafilm adhesion barrier: (1) a review of preclinical, animal, and human investigational studies. Gynecol. Surg. 9, 237–245 (2012).

    Article  Google Scholar 

  14. Malm, T., Bowald, S., Bylock, A. & Busch, C. Prevention of postoperative pericardial adhesions by closure of the pericardium with absorbable polymer patches. An experimental study. J. Thorac. Cardiovasc. Surg. 104, 600–607 (1992).

    CAS  PubMed  Google Scholar 

  15. Duncan, D. A. et al. Prevention of postoperative pericardial adhesions with hydrophilic polymer solutions. J. Surg. Res. 45, 44–49 (1987).

    Article  Google Scholar 

  16. Seeger, J. M. et al. Prevention of postoperative pericardial adhesions using tissue-protective solutions. J. Surg. Res. 68, 63–66 (1997).

    Article  CAS  Google Scholar 

  17. Hoare, T., Yeo, Y., Bellas, E., Bruggeman, J. P. & Kohane, D. S. Prevention of peritoneal adhesions using polymeric rheological blends. Acta Biomater. 10, 1187–1193 (2014).

    Article  CAS  Google Scholar 

  18. Yeo, Y. & Kohane, D. S. Polymers in the prevention of peritoneal adhesions. Eur. J. Pharm. Biopharm. 68, 57–66 (2008).

    Article  CAS  Google Scholar 

  19. Grainger, D. A., Meyer, W. R., DeCherney, A. H. & Diamond, M. P. The use of hyaluronic acid polymers to reduce postoperative adhesions. J. Gynecol. Surg. 7, 97–101 (2009).

    Article  Google Scholar 

  20. Sawhney, A. S., Pathak, C. P., Van Rensburg, J. J., Dunn, R. C. & Hubbell, J. A. Optimization of photopolymerized bioerodible hydrogel properties for adhesion prevention. Biomed. Mater. Res. 28, 831–838 (1994).

    Article  CAS  Google Scholar 

  21. Connors, R. C. et al. Postoperative pericardial adhesion prevention using carbylan-SX in a rabbit model. J. Surg. Res. 140, 237–242 (2007).

    Article  CAS  Google Scholar 

  22. Li, L. et al. Biodegradable and injectable in situ cross-linking chitosan-hyaluronic acid based hydrogels for postoperative adhesion prevention. Biomaterials 35, 903–3917 (2014).

    Google Scholar 

  23. Zhu, W. et al. Metal and light free ‘click’ hydrogels for prevention of post-operative peritoneal adhesions. Polym. Chem. 5, 2018–2026 (2014).

    Article  CAS  Google Scholar 

  24. Chan, M. et al. Reducing the oxidation level of dextran aldehyde in a chitosan/dextran-based surgical hydrogel increases biocompatibility and decreases antimicrobial efficacy. Int. J. Mol. Sci. 16, 13798–13814 (2015).

    Article  CAS  Google Scholar 

  25. Song, L. et al. Peritoneal adhesion prevention with a biodegradable and injectable N,O-carboxymethyl chitosan-aldehyde hyaluronic acid hydrogel in a rat repeated-injury model. Sci. Rep. 6, 37600 (2016).

    Article  CAS  Google Scholar 

  26. Yang, Y. et al. A postoperative anti-adhesion barrier based on photoinduced imine-crosslinking hydrogel with tissue-adhesive ability. Acta Biomater. 62, 199–209 (2017).

    Article  CAS  Google Scholar 

  27. Banasiewicz, T. et al. Preliminary study with SprayShieldadhesion barrier system in the prevention of abdominal adhesions. Video. Mini. 8, 301–309 (2013).

    Google Scholar 

  28. Napoleone, C. et al. An observational study of CoSeal for the prevention of adhesions in pediatric cardiac surgery. Inter. Cardiovasc. Thorac. Surg. 9, 978–982 (2009).

    Article  Google Scholar 

  29. Haensig, M. et al. Bioresorbable adhesion barrier for reducing the severity of postoperative cardiac adhesions: Focus on REPEL-CV. Med. Devices 4, 17–25 (2011).

    CAS  Google Scholar 

  30. Hirschelmann, A. et al. Is patient education about adhesions a requirement in abdominopelvic surgery? Geburtshilfe Frauenheilkd. 72, 299–304 (2012).

    Article  CAS  Google Scholar 

  31. Wang, Q. et al. High-water-content mouldable hydrogels by mixing clay and a dendritic molecular binder. Nature 463, 339–343 (2010).

    Article  CAS  Google Scholar 

  32. Appel, E. A., Barrio, J., Loh, X. J. & Scherman, O. A. Supramolecular polymeric hydrogels. Chem. Soc. Rev. 41, 6195–6214 (2012).

    Article  CAS  Google Scholar 

  33. Rose, S. et al. Nanoparticle solutions as adhesives for gels and biological tissues. Nature 505, 382–385 (2014).

    Article  CAS  Google Scholar 

  34. Appel, E. A. et al. Self-assembled hydrogels utilizing polymer–nanoparticle interactions. Nat. Commun. 4, 848–852 (2015).

    CAS  Google Scholar 

  35. Rodell, C. B. et al. Shear-thinning supramolecular hydrogels with secondary autonomous covalent crosslinking to modulate viscoelastic properties. Adv. Funct. Mater. 25, 636–644 (2015).

    Article  CAS  Google Scholar 

  36. Webber, M. J. et al. Supramolecular biomaterials. Nat. Mater. 15, 13–26 (2015).

    Article  Google Scholar 

  37. Appel, E. A. et al. Supramolecular cross-linked networks via host–guest complexation with cucurbit[8]uril. J. Am. Chem. Soc. 132, 14251–14260 (2010).

    Article  CAS  Google Scholar 

  38. Appel, E. A. et al. High-water-content hydrogels from renewable resources through host-guest interactions. J. Am. Chem. Soc. 134, 11767–11773 (2012).

    Article  CAS  Google Scholar 

  39. Appel, E. A. et al. Sustained release of proteins from high water content supramolecular hydrogels. Biomaterials 33, 4646–4652 (2012).

    Article  CAS  Google Scholar 

  40. Appel, E. A. et al. Activation energies control macroscopic properties of physically crosslinked materials. Angew. Chem. Int. Ed. 53, 10038–10043 (2014).

    Article  CAS  Google Scholar 

  41. Appel, E. A. et al. The control of cargo release from physically crosslinked hydrogels by crosslink dynamics. Biomaterials 35, 9897–9903 (2014).

    Article  CAS  Google Scholar 

  42. Appel, E. A. & Scherman, O. A. Gluing gels: A nanoparticle solution. Nat. Mater. 13, 231–232 (2014).

    Article  CAS  Google Scholar 

  43. Yu, A. C. et al. Scalable manufacturing of biomimetic moldable hydrogels for industrial applications. Proc. Natl Acad. Sci. USA 113, 14255–14260 (2016).

    Article  CAS  Google Scholar 

  44. Evans, N. D., Oreffo, R. O., Healy, E., Thurner, P. J. & Man, Y. H. Epithelial mechanobiology, skin wound healing, and the stem cell niche. J. Mech. Behav. Biomed. Mater. 28, 397–409 (2013).

    Article  Google Scholar 

  45. Arung, W., Meurisse, M. & Detry, O. Pathophysiology and prevention of postoperative peritoneal adhesions. World J. Gastroenterol. 17, 4545–4553 (2011).

    Article  Google Scholar 

  46. Alizzi, A. M. et al. Reduction of post-surgical pericardial adhesions using a pig model. Heart Lung Circ. 21, 22–29 (2012).

    Article  Google Scholar 

  47. Lassaletta, A. D., Chu, L. M. & Selke, F. W. Effects of alcohol on pericardial adhesion formation in hypercholesterolemic swine. J. Thorac. Cardiovasc. Surg. 143, 953–959 (2012).

    Article  CAS  Google Scholar 

  48. Lassaletta, A. D. et al. Mechanism for reduced pericardial adhesion formation in hypercholesterolemic swine supplemented with alcohol. Eur. J. Cardiothorac. Surg. 43, 1058–1064 (2013).

    Article  Google Scholar 

  49. Macarthur, J. W. et al. Preclinical evaluation of the engineered stem cell chemokine stromal cell-derived factor 1α analog in a translational ovine myocardial infarction model. Circ. Res. 114, 650–659 (2014).

    Article  CAS  Google Scholar 

  50. Elmadhun, N. Y. et al. Effects of alcohol on postoperative adhesion formation in ischemic myocardium and pericardium. Ann. Thorac. Surg. 104, 545–552 (2017).

    Article  Google Scholar 

  51. MacArthur, J. W. et al. Sustained release of engineered stromal cell-derived factor 1-α from injectable hydrogels effectively recruits endothelial progenitor cells and preserves ventricular function after myocardial infarction. Circulation 128, S79–S86 (2013).

    Article  CAS  Google Scholar 

  52. DiZerega, G. S. et al. Peritoneal repair and post-surgical adhesion formation. Hum. Reprod. 6, 547–555 (2001).

    Google Scholar 

  53. Yashiharu, K. et al. Pharmacokinetics and biodisposition of poly(vinyl alcohol) in rats and mice. Drug Metab. Pharmacokinet. 20, 435–442 (2005).

    Article  Google Scholar 

Download references


This work was made possible by the financial support from the Stanford BIOX Interdisciplinary Initiatives Program Seed Grant (E.A.A. and Y.J.W.), the Stanford-Coulter Translational Research Grant (E.A.A. and Y.J.W.), the National Institutes of Health (R01HL089315-01, Y.J.W.), the American Heart Association postdoctoral fellowship (H.W. and M.J.P.) and predoctoral fellowship (L.M.S.), the National Science Foundation AGEP California Alliance Postdoctoral Fellowship (H.L.H.) and Graduate Research Fellowship Program (DGE-1147470, L.M.S., A.N.S. and G.A.), the Stanford Interdisciplinary Graduate Fellowship (L.M.S.), and the American Association for Thoracic Surgery Summer Intern Scholarship (K.M.W.). The authors thank the Bogyo laboratory for the use of the Pearl instrument, the Stanford Veterinary Services Center for assistance with ovine surgeries and the Stanford Animal Histology Services for assistance with histology.

Author information

Authors and Affiliations



L.M.S., A.N.S., A.C.Y., H.W., M.J.P., A.A.A.S., Y.J.W. and E.A.A. designed experiments; L.M.S., H.W., H.J.L., A.D.T., H.L.H., G.A., K.P.T. and E.A.A. conducted experiments; J.M.F., H.J.L., A.D.T., A.E., K.M.W., C.E.H., K.J.J., M.J.P., S.W.B., B.C., C.M., F.G., H.B. and M.M. assisted with ovine surgeries; L.M.S., A.N.S., Y.T., Y.J.W. and E.A.A. analysed data; and L.M.S., Y.J.W. and E.A.A. wrote the paper.

Corresponding authors

Correspondence to Eric A. Appel or Y. Joseph Woo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary figures and video captions.

Reporting Summary

Supplementary Video 1

An untreated heart in a rodent pericardial-adhesion model

Supplementary Video 2

Seprafilm-treated heart in a rodent pericardial-adhesion model

Supplementary Video 3

Interceed-treated heart in a rodent pericardial-adhesion model

Supplementary Video 4

PNP-2:10-hydrogel-treated heart in a rodent pericardial-adhesion model

Supplementary Video 5

PNP-1:10-hydrogel-treated heart in a rodent pericardial-adhesion model

Supplementary Video 6

PNP-1:5-hydrogel-treated heart in a rodent pericardial-adhesion model

Supplementary Video 7

PNP-1:1-hydrogel-treated heart in a rodent pericardial-adhesion model

Supplementary Video 8

PNP-0.2:10-hydrogel-treated heart in a rodent pericardial-adhesion model

Supplementary Video 9

Spraying the PNP-1:10-hydrogel treatment onto the epicardial surface following epicardial abrasion

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stapleton, L.M., Steele, A.N., Wang, H. et al. Use of a supramolecular polymeric hydrogel as an effective post-operative pericardial adhesion barrier. Nat Biomed Eng 3, 611–620 (2019).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research