Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Computationally guided personalized targeted ablation of persistent atrial fibrillation


Atrial fibrillation (AF)—the most common arrhythmia—significantly increases the risk of stroke and heart failure. Although catheter ablation can restore normal heart rhythms, patients with persistent AF who develop atrial fibrosis often undergo multiple failed ablations, and thus increased procedural risks. Here, we present personalized computational modelling for the reliable predetermination of ablation targets, which are then used to guide the ablation procedure in patients with persistent AF and atrial fibrosis. First, we show that a computational model of the atria of patients identifies fibrotic tissue that, if ablated, will not sustain AF. Then, we report the results of integrating the target ablation sites in a clinical mapping system and testing its feasibility in ten patients with persistent AF. The computational prediction of ablation targets avoids lengthy electrical mapping and could improve the accuracy and efficacy of targeted AF ablation in patients while eliminating the need for repeat procedures.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: OPTIMA approach flowchart.
Fig. 2: Schematic summarizing the process of importing OPTIMA ablation targets into CARTO.
Fig. 3: Examples of the process to determine the OPTIMA ablation targets for three patients.
Fig. 4: Data from the OPTIMA-driven ablation procedures in the three patients from Fig. 2.

Code availability

The image-processing software ITK-SNAP is freely available from Computational meshes were generated using the commercial software Simpleware ScanIP (Synopsys). Source code for the human atrial ionic model is freely available from the repository CellML ( All simulations were conducted using the software package CARP, a free version of which can be downloaded for academic use via Simulation results were visualized using either Meshalyzer (which can be downloaded via or ParaView (Kitware) (which can be downloaded via Data from clinical procedures were visualized using the commercial software CARTOMERGE (Biosense Webster).

Data availability

Relevant data, including patient MRI scans, are available from the authors on approval from the Johns Hopkins Institutional Review Board.


  1. 1.

    Andrade, J., Khairy, P., Dobrev, D. & Nattel, S. The clinical profile and pathophysiology of atrial fibrillation: relationships among clinical features, epidemiology, and mechanisms. Circ. Res. 114, 1453–1468 (2014).

    CAS  PubMed  Google Scholar 

  2. 2.

    Go, A. S. et al. Prevalence of diagnosed atrial fibrillation in adults: national implications for rhythm management and stroke prevention: the AnTicoagulation and Risk Factors in Atrial Fibrillation (ATRIA) Study. J. Am. Med. Assoc. 285, 2370–2375 (2001).

    CAS  Google Scholar 

  3. 3.

    Dorian, P. et al. The impairment of health-related quality of life in patients with intermittent atrial fibrillation: implications for the assessment of investigational therapy. J. Am. Coll. Cardiol. 36, 1303–1309 (2000).

    CAS  PubMed  Google Scholar 

  4. 4.

    Kalantarian, S., Stern, T. A., Mansour, M. & Ruskin, J. N. Cognitive impairment associated with atrial fibrillation: a meta-analysis. Ann. Intern. Med. 158, 338–346 (2013).

    PubMed  PubMed Central  Google Scholar 

  5. 5.

    Stewart, S., Murphy, N. F., Walker, A., McGuire, A. & McMurray, J. J. Cost of an emerging epidemic: an economic analysis of atrial fibrillation in the UK. Heart 90, 286–292 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Calkins, H. et al. 2017 HRS/EHRA/ECAS/APHRS/SOLAECE expert consensus statement on catheter and surgical ablation of atrial fibrillation. Heart Rhythm 14, e275–e444 (2017).

    PubMed  PubMed Central  Google Scholar 

  7. 7.

    Oakes, R. S. et al. Detection and quantification of left atrial structural remodeling with delayed-enhancement magnetic resonance imaging in patients with atrial fibrillation. Circulation 119, 1758–1767 (2009).

    PubMed  PubMed Central  Google Scholar 

  8. 8.

    Marrouche, N. F. et al. Association of atrial tissue fibrosis identified by delayed enhancement MRI and atrial fibrillation catheter ablation: the DECAAF study. J. Am. Med. Assoc. 311, 498–506 (2014).

    CAS  Google Scholar 

  9. 9.

    Scherr, D. et al. Five-year outcome of catheter ablation of persistent atrial fibrillation using termination of atrial fibrillation as a procedural endpoint. Circ. Arrhythm. Electrophysiol. 8, 18–24 (2015).

    CAS  PubMed  Google Scholar 

  10. 10.

    Xu, J. et al. Atrial extracellular matrix remodeling and the maintenance of atrial fibrillation. Circulation 109, 363–368 (2004).

    CAS  PubMed  Google Scholar 

  11. 11.

    Tanaka, K. et al. Spatial distribution of fibrosis governs fibrillation wave dynamics in the posterior left atrium during heart failure. Circ. Res. 101, 839–847 (2007).

    CAS  PubMed  Google Scholar 

  12. 12.

    Verma, A. et al. Approaches to catheter ablation for persistent atrial fibrillation. N. Engl. J. Med. 372, 1812–1822 (2015).

    PubMed  Google Scholar 

  13. 13.

    Rappel, W. J., Zaman, J. A. & Narayan, S. M. Mechanisms for the termination of atrial fibrillation by localized ablation: computational and clinical studies. Circ. Arrhythm. Electrophysiol. 8, 1325–1333 (2015).

    PubMed  PubMed Central  Google Scholar 

  14. 14.

    Haissaguerre, M. et al. Driver domains in persistent atrial fibrillation. Circulation 130, 530–538 (2014).

    PubMed  Google Scholar 

  15. 15.

    Swarup, V. et al. Stability of rotors and focal sources for human atrial fibrillation: focal impulse and rotor mapping (FIRM) of AF sources and fibrillatory conduction. J. Cardiovasc. Electrophysiol. 25, 1284–1292 (2014).

    PubMed  Google Scholar 

  16. 16.

    Trayanova, N. A. Mathematical approaches to understanding and imaging atrial fibrillation: significance for mechanisms and management. Circ. Res. 114, 1516–1531 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Zahid, S. et al. Patient-derived models link re-entrant driver localization in atrial fibrillation to fibrosis spatial pattern. Cardiovasc. Res. 110, 443–454 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Zahid, S. et al. Feasibility of using patient-specific models and the “minimum cut” algorithm to predict optimal ablation targets for left atrial flutter. Heart Rhythm 13, 1687–1698 (2016).

    PubMed  PubMed Central  Google Scholar 

  19. 19.

    Shim, J. et al. Virtual in-silico modeling guided catheter ablation predicts effective linear ablation lesion set for longstanding persistent atrial fibrillation: multicenter prospective randomized study. Front. Physiol. 8, 792 (2017).

    PubMed  PubMed Central  Google Scholar 

  20. 20.

    Deng, D. et al. Sensitivity of reentrant driver localization to electrophysiological parameter variability in image-based computational models of persistent atrial fibrillation sustained by a fibrotic substrate. Chaos 27, 093932 (2017).

    PubMed  PubMed Central  Google Scholar 

  21. 21.

    Hakim, J. B., Murphy, M. J., Trayanova, N. A. & Boyle, P. M. Arrhythmia dynamics in computational models of the atria following virtual ablation of re-entrant drivers. Europace 20, iii45–iii54 (2018).

    PubMed  PubMed Central  Google Scholar 

  22. 22.

    Narayan, S. M. et al. Treatment of atrial fibrillation by the ablation of localized sources: CONFIRM (Conventional Ablation for Atrial Fibrillation With or Without Focal Impulse and Rotor Modulation) trial. J. Am. Coll. Cardiol. 60, 628–636 (2012).

    PubMed  PubMed Central  Google Scholar 

  23. 23.

    Ramanathan, C., Ghanem, R. N., Jia, P., Ryu, K. & Rudy, Y. Noninvasive electrocardiographic imaging for cardiac electrophysiology and arrhythmia. Nat. Med. 10, 422–428 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Boyle, P. M. et al. The fibrotic substrate in persistent atrial fibrillation patients: comparison between predictions from computational modeling and measurements from focal impulse and rotor mapping. Front. Physiol. 9, 1151 (2018).

    PubMed  PubMed Central  Google Scholar 

  25. 25.

    Boyle, P. M. et al. Comparing reentrant drivers predicted by image-based computational modeling and mapped by electrocardiographic imaging in persistent atrial fibrillation. Front. Physiol. 9, 414 (2018).

    PubMed  PubMed Central  Google Scholar 

  26. 26.

    Lalani, G. G. et al. Organized sources are spatially conserved in recurrent compared to pre-ablation atrial fibrillation: further evidence for non-random electrical substrates. J. Cardiovasc. Electrophysiol. 27, 661–669 (2016).

    PubMed  PubMed Central  Google Scholar 

  27. 27.

    Brooks, A. G. et al. Outcomes of long-standing persistent atrial fibrillation ablation: a systematic review. Heart Rhythm 7, 835–846 (2010).

    PubMed  Google Scholar 

  28. 28.

    McGann, C. et al. Atrial fibrillation ablation outcome is predicted by left atrial remodeling on MRI. Circ. Arrhythm. Electrophysiol. 7, 23–30 (2014).

    PubMed  Google Scholar 

  29. 29.

    Khurram, I. M. et al. Magnetic resonance image intensity ratio, a normalized measure to enable interpatient comparability of left atrial fibrosis. Heart Rhythm 11, 85–92 (2014).

    PubMed  Google Scholar 

  30. 30.

    Yushkevich, P. A. et al. User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. NeuroImage 31, 1116–1128 (2006).

    PubMed  Google Scholar 

  31. 31.

    Karim, R. et al. Evaluation of state-of-the-art segmentation algorithms for left ventricle infarct from late gadolinium enhancement MR images. Med. Image Anal. 30, 95–107 (2016).

    PubMed  Google Scholar 

  32. 32.

    Raya, S. P. & Udupa, J. K. Shape-based interpolation of multidimensional objects. IEEE Trans. Med. Imaging 9, 32–42 (1990).

    CAS  PubMed  Google Scholar 

  33. 33.

    Vadakkumpadan, F. et al. Image-based models of cardiac structure with applications in arrhythmia and defibrillation studies. J. Electro. 42, 157.e1–157.e10 (2009).

    Google Scholar 

  34. 34.

    Plank, G. et al. From mitochondrial ion channels to arrhythmias in the heart: computational techniques to bridge the spatio-temporal scales. Phil. Trans. A Math. Phys. Eng. Sci. 366, 3381–3409 (2008).

    Google Scholar 

  35. 35.

    Niederer, S. A. et al. Verification of cardiac tissue electrophysiology simulators using an N-version benchmark. Phil. Trans. A Math. Phys. Eng. Sci. 369, 4331–4351 (2011).

    Google Scholar 

  36. 36.

    Beg, M. F., Helm, P. A., McVeigh, E., Miller, M. I. & Winslow, R. L. Computational cardiac anatomy using MRI. Magn. Reson. Med. 52, 1167–1174 (2004).

    PubMed  PubMed Central  Google Scholar 

  37. 37.

    McDowell, K. S. et al. Methodology for patient-specific modeling of atrial fibrosis as a substrate for atrial fibrillation. J. Electrocardiol. 45, 640–645 (2012).

    PubMed  PubMed Central  Google Scholar 

  38. 38.

    McDowell, K. S. et al. Mechanistic inquiry into the role of tissue remodeling in fibrotic lesions in human atrial fibrillation. Biophys. J. 104, 2764–2773 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Labarthe, S. et al. A bilayer model of human atria: mathematical background, construction, and assessment. Europace 16, iv21–iv29 (2014).

    PubMed  Google Scholar 

  40. 40.

    Roney, C. H. et al. Modelling methodology of atrial fibrosis affects rotor dynamics and electrograms. Europace 18, iv146–iv155 (2016).

    PubMed  PubMed Central  Google Scholar 

  41. 41.

    Boyle, P. M., Zahid, S. & Trayanova, N. A. Towards personalized computational modelling of the fibrotic substrate for atrial arrhythmia. Europace 18, iv136–iv145 (2016).

    PubMed  PubMed Central  Google Scholar 

  42. 42.

    Courtemanche, M., Ramirez, R. J. & Nattel, S. Ionic mechanisms underlying human atrial action potential properties: insights from a mathematical model. Am. J. Physiol. 275, H301–H321 (1998).

    CAS  PubMed  Google Scholar 

  43. 43.

    Krummen, D. E. et al. Mechanisms of human atrial fibrillation initiation: clinical and computational studies of repolarization restitution and activation latency. Circ. Arrhythm. Electrophysiol. 5, 1149–1159 (2012).

    PubMed  Google Scholar 

  44. 44.

    Konings, K. T. et al. High-density mapping of electrically induced atrial fibrillation in humans. Circulation 89, 1665–1680 (1994).

    CAS  PubMed  Google Scholar 

  45. 45.

    Avila, G., Medina, I. M., Jimenez, E., Elizondo, G. & Aguilar, C. I. Transforming growth factor-β1 decreases cardiac muscle L-type Ca2+ current and charge movement by acting on the Cav1.2 mRNA. Am. J. Physiol. Heart Circ. Physiol. 292, H622–H631 (2007).

    CAS  PubMed  Google Scholar 

  46. 46.

    Nattel, S., Burstein, B. & Dobrev, D. Atrial remodeling and atrial fibrillation: mechanisms and implications. Circ. Arrhythm. Electrophysiol. 1, 62–73 (2008).

    PubMed  Google Scholar 

  47. 47.

    Corradi, D., Callegari, S., Maestri, R., Benussi, S. & Alfieri, O. Structural remodeling in atrial fibrillation. Nat. Clin. Pract. Cardiovasc. Med. 5, 782–796 (2008).

    PubMed  Google Scholar 

  48. 48.

    Pedrotty, D. M., Klinger, R. Y., Kirkton, R. D. & Bursac, N. Cardiac fibroblast paracrine factors alter impulse conduction and ion channel expression of neonatal rat cardiomyocytes. Cardiovasc. Res. 83, 688–697 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Kakkar, R. & Lee, R. T. Intramyocardial fibroblast myocyte communication. Circ. Res. 106, 47–57 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Ramos-Mondragon, R., Vega, A. V. & Avila, G. Long-term modulation of Na+ and K+ channels by TGF-β1 in neonatal rat cardiac myocytes. Pflug. Arch. 461, 235–247 (2011).

    CAS  Google Scholar 

  51. 51.

    Li, D., Fareh, S., Leung, T. K. & Nattel, S. Promotion of atrial fibrillation by heart failure in dogs: atrial remodeling of a different sort. Circulation 100, 87–95 (1999).

    CAS  PubMed  Google Scholar 

  52. 52.

    Burstein, B. et al. Changes in connexin expression and the atrial fibrillation substrate in congestive heart failure. Circ. Res. 105, 1213–1222 (2009).

    CAS  PubMed  Google Scholar 

  53. 53.

    Cochet, H. et al. Relationship between fibrosis detected on late gadolinium-enhanced cardiac magnetic resonance and re-entrant activity assessed with electrocardiographic imaging in human persistent atrial fibrillation. JACC Clin. Electrophysiol. 4, 17–29 (2018).

    PubMed  Google Scholar 

  54. 54.

    Vigmond, E. J., Weber Dos Santos, R., Prassl, A. J., Deo, M. & Plank, G. Solvers for the cardiac bidomain equations. Prog. Biophys. Mol. Biol. 96, 3–18 (2008).

    CAS  PubMed  Google Scholar 

  55. 55.

    Boyle, P. M., Williams, J. C., Ambrosi, C. M., Entcheva, E. & Trayanova, N. A. A comprehensive multiscale framework for simulating optogenetics in the heart. Nat. Commun. 4, 2370 (2013).

    PubMed  PubMed Central  Google Scholar 

  56. 56.

    Arevalo, H. J. et al. Arrhythmia risk stratification of patients after myocardial infarction using personalized heart models. Nat. Commun. 7, 11437 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Eason, J. & Trayanova, N. Phase singularities and termination of spiral wave reentry. J. Cardiovasc. Electrophysiol. 13, 672–679 (2002).

    PubMed  Google Scholar 

  58. 58.

    Narayan, S. M., Krummen, D. E. & Rappel, W. J. Clinical mapping approach to diagnose electrical rotors and focal impulse sources for human atrial fibrillation. J. Cardiovasc. Electrophysiol. 23, 447–454 (2012).

    PubMed  PubMed Central  Google Scholar 

  59. 59.

    Arevalo, H., Plank, G., Helm, P., Halperin, H. & Trayanova, N. Tachycardia in post-infarction hearts: insights from 3D image-based ventricular models. PLoS ONE 8, e68872 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Tops, L. F. et al. Fusion of multislice computed tomography imaging with three-dimensional electroanatomic mapping to guide radiofrequency catheter ablation procedures. Heart Rhythm 2, 1076–1081 (2005).

    PubMed  Google Scholar 

  61. 61.

    Dong, J. et al. Impact of heart rhythm status on registration accuracy of the left atrium for catheter ablation of atrial fibrillation. J. Cardiovasc. Electrophysiol. 18, 1269–1276 (2007).

    PubMed  Google Scholar 

  62. 62.

    Martinek, M., Nesser, H. J., Aichinger, J., Boehm, G. & Purerfellner, H. Impact of integration of multislice computed tomography imaging into three-dimensional electroanatomic mapping on clinical outcomes, safety, and efficacy using radiofrequency ablation for atrial fibrillation. Pacing Clin. Electrophysiol. 30, 1215–1223 (2007).

    PubMed  Google Scholar 

  63. 63.

    Bertaglia, E. et al. Image integration increases efficacy of paroxysmal atrial fibrillation catheter ablation: results from the CartoMerge Italian Registry. Europace 11, 1004–1010 (2009).

    PubMed  Google Scholar 

Download references


This project was supported by grants from the NIH (DP1-HL123271 to N.A.T. and U01-HL141074 to N.A.T. and P.M.B.), the AHA (16-SDG-30440006 to P.M.B.), Biosense Webster (to S.N.) and the NSF (graduate fellowship to S.Z.). This project has received funding from the Leducq Foundation (Research Grant number 16 CVD 02). This project was also supported by the Roz and Marvin H. Weiner and Family Foundation, the Dr Francis P. Chiaramonte Private Foundation, M. Poindexter, C. Poindexter and the Norbert and Louise Grunwald Cardiac Arrhythmia Research Fund.

Author information




T.Z., P.M.B., S.Z., A.P., S.N., H.C. and N.A.T. designed the study. P.M.B., S.Z., R.L.A., D.D., W.H.F., J.B.H. and M.J.M. conducted the simulations and analysed the simulation results. T.Z., P.M.B., S.Z., R.L.A., J.B.H., A.P., S.L.Z., H.A., J.E.M., A.K., S.N., D.D.S., H.C. and N.A.T. interpreted the imaging and simulation data. H.A., J.E.M. and H.C. performed the catheter ablation procedures. T.Z., P.M.B. and N.A.T. wrote the paper. H.A., J.E.M., D.D.S. and H.C. edited the manuscript.

Corresponding author

Correspondence to Natalia A. Trayanova.

Ethics declarations

Competing interests

N.A.T. has filed a patent application (US patent application number US0161100A1; World Intellectual Property Organization application number WO2015/084876A1; European Patent Office application number EP3076869A4; Japan application number JP2016540570A; Israel application number IL245988D0; entitled ‘Systems and methods for atrial fibrillation treatment and risk assessment’) that is currently under review.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary figures, tables and video captions.

Reporting Summary

Supplementary Video 1

Dynamic illustration of all of the steps in the OPTIMA approach.

Supplementary Video 2

Dynamic illustration of the results shown in the top two rows of Fig. 2 (patient 5).

Supplementary Video 3

Same as Supplementary Video 2, but for the results shown in the third and fourth rows of Fig. 2 (patient 7).

Supplementary Video 4

Same as Supplementary Video 2, but for the results shown in the bottom two rows of Fig. 2 (patient 9).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Boyle, P.M., Zghaib, T., Zahid, S. et al. Computationally guided personalized targeted ablation of persistent atrial fibrillation. Nat Biomed Eng 3, 870–879 (2019).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing