Barcoded DNA nanostructures for the multiplexed profiling of subcellular protein distribution


Massively parallel DNA sequencing is established, yet high-throughput protein profiling remains challenging. Here, we report a barcoding approach that leverages the combinatorial sequence content and the configurational programmability of DNA nanostructures for high-throughput multiplexed profiling of the subcellular expression and distribution of proteins in whole cells. The barcodes are formed by in situ hybridization of tetrahedral DNA nanostructures and short DNA sequences conjugated with protein-targeting antibodies, and by nanostructure-assisted ligation (either enzymatic or chemical) of the nanostructures and exogenous DNA sequences bound to nanoparticles of different sizes (which cause these localization sequences to differentially distribute across subcellular compartments). Compared with linear DNA barcoding, the nanostructured barcodes enhance the signal by more than 100-fold. By implementing the barcoding approach on a microfluidic device for the analysis of rare patient samples, we show that molecular subtypes of breast cancer can be accurately classified and that subcellular spatial markers of disease aggressiveness can be identified.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: DNA STAMP.
Fig. 2: Highly sensitive protein detection with STAMP.
Fig. 3: STAMP measurements of protein expression and subcellular distribution.
Fig. 4: Multiplexed STAMP for high-throughput cellular profiling.
Fig. 5: Protein typing of rare clinical samples.

Data availability

The authors declare that the main data supporting the results in this study are available within the paper and its Supplementary Information. The raw and analysed datasets generated during the study are available for research purposes from the corresponding author on reasonable request.


  1. 1.

    Borrebaeck, C. A. Precision diagnostics: moving towards protein biomarker signatures of clinical utility in cancer. Nat. Rev. Cancer 17, 199–204 (2017).

    CAS  Article  Google Scholar 

  2. 2.

    Landegren, U., Al-Amin, R. A. & Björkesten, J. A myopic perspective on the future of protein diagnostics. New Biotechnol. 45, 14–18 (2018).

    CAS  Article  Google Scholar 

  3. 3.

    Klein, A. M. et al. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161, 1187–1201 (2015).

    CAS  Article  Google Scholar 

  4. 4.

    De Vlaminck, I. et al. Noninvasive monitoring of infection and rejection after lung transplantation. Proc. Natl Acad. Sci. USA 112, 13336–13341 (2015).

    Article  Google Scholar 

  5. 5.

    Hughes, A. J. et al. Single-cell western blotting. Nat. Methods 11, 749–755 (2014).

    CAS  Article  Google Scholar 

  6. 6.

    Yamauchi, K. A. & Herr, A. E. Subcellular western blotting of single cells. Microsyst. Nanoeng. 3, 16079 (2017).

    CAS  Article  Google Scholar 

  7. 7.

    Thul, P. J. et al. A subcellular map of the human proteome. Science 356, eaal3321 (2017).

    Article  Google Scholar 

  8. 8.

    Adan, A., Alizada, G., Kiraz, Y., Baran, Y. & Nalbant, A. Flow cytometry: basic principles and applications. Crit. Rev. Biotechnol. 37, 163–176 (2017).

    CAS  Article  Google Scholar 

  9. 9.

    Tighe, P. J., Ryder, R. R., Todd, I. & Fairclough, L. C. ELISA in the multiplex era: potentials and pitfalls. Proteom. Clin. Appl. 9, 406–422 (2015).

    CAS  Article  Google Scholar 

  10. 10.

    Foster, L. J. et al. A mammalian organelle map by protein correlation profiling. Cell 125, 187–199 (2006).

    CAS  Article  Google Scholar 

  11. 11.

    Kingsmore, S. F. Multiplexed protein measurement: technologies and applications of protein and antibody arrays. Nat. Rev. Drug Discov. 5, 310–320 (2006).

    CAS  Article  Google Scholar 

  12. 12.

    Nong, R. Y., Gu, J., Darmanis, S., Kamali-Moghaddam, M. & Landegren, U. DNA-assisted protein detection technologies. Expert Rev. Proteom. 9, 21–32 (2012).

    CAS  Article  Google Scholar 

  13. 13.

    Fredriksson, S. et al. Multiplexed protein detection by proximity ligation for cancer biomarker validation. Nat. Methods 4, 327–329 (2007).

    CAS  Article  Google Scholar 

  14. 14.

    Burns, T. J. et al. High-throughput precision measurement of subcellular localization in single cells. Cytom. A 91, 180–189 (2017).

    CAS  Article  Google Scholar 

  15. 15.

    Goltsev, Y. et al. Deep profiling of mouse splenic architecture with CODEX multiplexed imaging. Cell 174, 968–981 (2018).

    CAS  Article  Google Scholar 

  16. 16.

    Boutorine, A. S., Novopashina, D. S., Krasheninina, O. A., Nozeret, K. & Venyaminova, A. G. Fluorescent probes for nucleic acid visualization in fixed and live cells. Molecules 18, 15357–15397 (2013).

    CAS  Article  Google Scholar 

  17. 17.

    Kazane, S. A. et al. Site-specific DNA-antibody conjugates for specific and sensitive immuno-PCR. Proc. Natl Acad. Sci. USA 109, 3731–3736 (2012).

    CAS  Article  Google Scholar 

  18. 18.

    Rosen, C. B. et al. Template-directed covalent conjugation of DNA to native antibodies, transferrin and other metal-binding proteins. Nat. Chem. 6, 804–809 (2014).

    CAS  Article  Google Scholar 

  19. 19.

    Gu, L. et al. Multiplex single-molecule interaction profiling of DNA-barcoded proteins. Nature 515, 554–557 (2014).

    CAS  Article  Google Scholar 

  20. 20.

    Agasti, S. S., Liong, M., Peterson, V. M., Lee, H. & Weissleder, R. Photocleavable DNA barcode–antibody conjugates allow sensitive and multiplexed protein analysis in single cells. J. Am. Chem. Soc. 134, 18499–18502 (2012).

    CAS  Article  Google Scholar 

  21. 21.

    Kwak, M. & Herrmann, A. Nucleic acid/organic polymer hybrid materials: synthesis, superstructures, and applications. Angew. Chem. Int. Edn. 49, 8574–8587 (2010).

    CAS  Article  Google Scholar 

  22. 22.

    Douglas, S. M. et al. Self-assembly of DNA into nanoscale three-dimensional shapes. Nature 459, 414–418 (2009).

    CAS  Article  Google Scholar 

  23. 23.

    Ke, Y., Ong, L. L., Shih, W. M. & Yin, P. Three-dimensional structures self-assembled from DNA bricks. Science 338, 1177–1183 (2012).

    CAS  Article  Google Scholar 

  24. 24.

    Li, Y. et al. Controlled assembly of dendrimer-like DNA. Nat. Mater. 3, 38–42 (2004).

    CAS  Article  Google Scholar 

  25. 25.

    Lin, C. et al. Submicrometre geometrically encoded fluorescent barcodes self-assembled from DNA. Nat. Chem. 4, 832–839 (2012).

    CAS  Article  Google Scholar 

  26. 26.

    Lee, H. et al. Molecularly self-assembled nucleic acid nanoparticles for targeted in vivo siRNA delivery. Nat. Nanotechnol. 7, 389–393 (2012).

    CAS  Article  Google Scholar 

  27. 27.

    Lin, M. et al. Programmable engineering of a biosensing interface with tetrahedral DNA nanostructures for ultrasensitive DNA detection. Angew. Chem. Int. Ed 54, 2151–2155 (2015).

    CAS  Article  Google Scholar 

  28. 28.

    Wang, L., Meng, Z., Martina, F., Shao, H. & Shao, F. Fabrication of circular assemblies with DNA tetrahedrons: from static structures to a dynamic rotary motor. Nucleic Acids Res. 45, 12090–12099 (2017).

    CAS  Article  Google Scholar 

  29. 29.

    Neve, R. M. et al. A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 10, 515–527 (2006).

    CAS  Article  Google Scholar 

  30. 30.

    Anglesio, M. S. et al. Type-specific cell line models for type-specific ovarian cancer research. PLoS ONE 8, e72162 (2013).

    CAS  Article  Google Scholar 

  31. 31.

    Bauer, R. J., Jurkiw, T. J., Evans, T. C. & Lohman, G. J. Rapid time scale analysis of T4 DNA Ligase-DNA binding. Biochemistry 56, 1117–1129 (2017).

    CAS  Article  Google Scholar 

  32. 32.

    Rossi, R., Montecucco, A., Ciarrocchi, G. & Biamonti, G. Functional characterization of the T4 DNA ligase: a new insight into the mechanism of action. Nucleic Acids Res. 25, 2106–2113 (1997).

    CAS  Article  Google Scholar 

  33. 33.

    Costantini, D. L., Bateman, K., McLarty, K., Vallis, K. A. & Reilly, R. M. Trastuzumab-resistant breast cancer cells remain sensitive to the Auger electron-emitting radiotherapeutic agent 111In-NLS-trastuzumab and are radiosensitized by methotrexate. J. Nucl. Med. 49, 1498–1505 (2008).

    CAS  Article  Google Scholar 

  34. 34.

    Uhlen, M. et al. Towards a knowledge-based human protein atlas. Nat. Biotechnol. 28, 1248–1250 (2010).

    CAS  Article  Google Scholar 

  35. 35.

    Im, H. et al. Label-free detection and molecular profiling of exosomes with a nano-plasmonic sensor. Nat. Biotechnol. 32, 490–495 (2014).

    CAS  Article  Google Scholar 

  36. 36.

    Blows, F. M. et al. Subtyping of breast cancer by immunohistochemistry to investigate a relationship between subtype and short and long term survival: a collaborative analysis of data for 10,159 cases from 12 studies. PLoS Med. 7, e1000279 (2010).

    Article  Google Scholar 

  37. 37.

    Maciejczyk, A. et al. Elevated nuclear S100P expression is associated with poor survival in early breast cancer patients. Histol. Histopathol. 28, 513–524 (2013).

    PubMed  Google Scholar 

  38. 38.

    van der Gun, B. T. et al. EpCAM in carcinogenesis: the good, the bad or the ugly. Carcinogenesis 31, 1913–1921 (2010).

    Article  Google Scholar 

  39. 39.

    Ralhan, R. et al. EpCAM nuclear localization identifies aggressive thyroid cancer and is a marker for poor prognosis. BMC Cancer 10, 331 (2010).

    Article  Google Scholar 

  40. 40.

    Schillaci, R. et al. Clinical relevance of ErbB-2/HER2 nuclear expression in breast cancer. BMC Cancer 12, 74 (2012).

    Article  Google Scholar 

  41. 41.

    Elizalde, P. V., Cordo Russo, R. I., Chervo, M. F. & Schillaci, R. ErbB-2 nuclear function in breast cancer growth, metastasis and resistance to therapy. Endocr. Relat. Cancer 23, T243–T257 (2016).

    CAS  Article  Google Scholar 

  42. 42.

    Chen, Y. J., Groves, B., Muscat, R. A. & Seelig, G. DNA nanotechnology from the test tube to the cell. Nat. Nanotechnol. 10, 748–760 (2015).

    CAS  Article  Google Scholar 

  43. 43.

    Seeman, N. C. & Sleiman, H. F. DNA nanotechnology. Nat. Rev. Mater. 3, 17068 (2017).

    Article  Google Scholar 

  44. 44.

    Pei, H., Zuo, X., Zhu, D., Huang, Q. & Fan, C. Functional DNA nanostructures for theranostic applications. Acc. Chem. Res. 47, 550–559 (2014).

    CAS  Article  Google Scholar 

  45. 45.

    Xie, N. et al. DNA tetrahedron nanostructures for biological applications: biosensors and drug delivery. Analyst 142, 3322–3332 (2017).

    CAS  Article  Google Scholar 

  46. 46.

    Fredriksson, S. et al. Protein detection using proximity-dependent DNA ligation assays. Nat. Biotechnol. 20, 473–477 (2002).

    CAS  Article  Google Scholar 

  47. 47.

    Wu, A. M. & Senter, P. D. Arming antibodies: prospects and challenges for immunoconjugates. Nat. Biotechnol. 23, 1137–1146 (2005).

    CAS  Article  Google Scholar 

  48. 48.

    Söderberg, O. et al. Direct observation of individual endogenous protein complexes in situ by proximity ligation. Nat. Methods 3, 995–1000 (2006).

    Article  Google Scholar 

  49. 49.

    Ryan, C. J. et al. High-resolution network biology: connecting sequence with function. Nat. Rev. Genet. 14, 865–879 (2013).

    CAS  Article  Google Scholar 

  50. 50.

    Gerber, D., Maerkl, S. J. & Quake, S. R. An in vitro microfluidic approach to generating protein-interaction networks. Nat. Methods 6, 71–74 (2009).

    CAS  Article  Google Scholar 

  51. 51.

    Li, J., Green, A. A., Yan, H. & Fan, C. Engineering nucleic acid structures for programmable molecular circuitry and intracellular biocomputation. Nat. Chem. 9, 1056–1067 (2017).

    CAS  Article  Google Scholar 

  52. 52.

    Ho, N. R. Y. et al. Visual and modular detection of pathogen nucleic acids with enzyme-DNA molecular complexes. Nat. Commun. 9, 3238 (2018).

    Article  Google Scholar 

  53. 53.

    Ren, K. et al. A DNA dual lock-and-key strategy for cell-subtype-specific siRNA delivery. Nat. Commun. 7, 13580 (2016).

    CAS  Article  Google Scholar 

  54. 54.

    Shao, H. et al. Chip-based analysis of exosomal mRNA mediating drug resistance in glioblastoma. Nat. Commun. 6, 6999 (2015).

    CAS  Article  Google Scholar 

  55. 55.

    Prakadan, S. M., Shalek, A. K. & Weitz, D. A. Scaling by shrinking: empowering single-cell ‘omics’ with microfluidic devices. Nat. Rev. Genet. 18, 345–361 (2017).

    CAS  Article  Google Scholar 

Download references


The authors thank Y. K. Sim, Y. P. Neo and C. Liu for experimental assistance, J. L.Y. Yap, R. Malathi and A. Franco-Obregón for assistance with clinical sample collection, NUH Tissue Repository for providing clinical samples and S. V. Sundararajan for device fabrication. This work was supported in part by funding from NUS Research Scholarship, Ministry of Education, National Medical Research Council, NUS iHealthtech, A*STAR IMCB Independent Fellowship and NUS Early Career Research Award.

Author information




N.R.S. and H.S. designed the study, performed data analysis and wrote the manuscript. N.R.S., N.R.Y.H., G.S.L., A.N., X.D. and Y.L. performed the research. C.W.C. and T.P.L. provided clinical samples. J.E.S. provided pathology evaluation. All authors contributed to the manuscript.

Corresponding author

Correspondence to Huilin Shao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary Information

Supplementary figures and tables.

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sundah, N.R., Ho, N.R.Y., Lim, G.S. et al. Barcoded DNA nanostructures for the multiplexed profiling of subcellular protein distribution. Nat Biomed Eng 3, 684–694 (2019).

Download citation

Further reading


Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing