In vitro bone-like nodules generated from patient-derived iPSCs recapitulate pathological bone phenotypes

Abstract

The recapitulation of bone formation via the in vitro generation of bone-like nodules is frequently used to understand bone development. However, current bone-induction techniques are slow and difficult to reproduce. Here, we report the formation of bone-like nodules within ten days, via the use of retinoic acid (RA) to induce the osteogenic differentiation of human induced pluripotent stem cells (hiPSCs) into osteoblast-like and osteocyte-like cells that create human bone tissue when implanted in calvarial defects in mice. We also show that the induction of bone formation depends on cell signalling through the RA receptors RARα and RARβ, which simultaneously activate the BMP (bone morphogenetic protein) and Wnt signalling pathways. Moreover, by using patient-derived hiPSCs, the bone-like nodules recapitulated the osteogenesis-imperfecta phenotype, which was rescued via the correction of disease-causing mutations and partially by an mTOR (mechanistic target of rapamycin) inhibitor. The method of inducing bone nodules may serve as a fast and reproducible model for the study of the formation of both healthy and pathological bone.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: RA promotes the formation of bone-like nodules from hiPSCs.
Fig. 2: RA induces bone-like nodules containing osteoblast- and osteocyte-like cells.
Fig. 3: In vivo bone-forming properties of RA-treated cells.
Fig. 4: RA activates BMP and WNT signals.
Fig. 5: RA promotes osteogenic differentiation of iPSCs via RARα and RARβ.
Fig. 6: Agonists specific for RARα and RARβ promote osteogenic differentiation.
Fig. 7: Recapitulation of disease phenotypes using iPSCs derived from patients with osteogenesis imperfecta (OI).
Fig. 8: mTOR inhibitors rescue OI phenotypes.

Data availability

The authors declare that all data supporting the results in this study are available within the paper and its Supplementary Information. Raw data are available from the corresponding author on reasonable request. The affymetrix data have been deposited in the GEO database, under accession number GSE119577.

References

  1. 1.

    Robling, A. G., Castillo, A. B. & Turner, C. H. Biomechanical and molecular regulation of bone remodeling. Annu Rev. Biomed. Eng. 8, 455–498 (2006).

    CAS  Article  Google Scholar 

  2. 2.

    Sims, N. A. & Gooi, J. H. Bone remodeling: multiple cellular interactions required for coupling of bone formation and resorption. Semin. Cell Dev. Biol. 19, 444–451 (2008).

    CAS  Article  Google Scholar 

  3. 3.

    Raggatt, L. J. & Partridge, N. C. Cellular and molecular mechanisms of bone remodeling. J. Biol. Chem. 285, 25103–25108 (2010).

    CAS  Article  Google Scholar 

  4. 4.

    Feng, X. & McDonald, J. M. Disorders of bone remodeling. Annu. Rev. Pathol. 6, 121–145 (2011).

    CAS  Article  Google Scholar 

  5. 5.

    Davey, R. A., MacLean, H. E., McManus, J. F., Findlay, D. M. & Zajac, J. D. Genetically modified animal models as tools for studying bone and mineral metabolism. J. Bone Miner. Res. 19, 882–892 (2004).

    Article  Google Scholar 

  6. 6.

    Elefteriou, F. & Yang, X. Genetic mouse models for bone studies–strengths and limitations. Bone 49, 1242–1254 (2011).

    CAS  Article  Google Scholar 

  7. 7.

    Bhargava, U., Bar-Lev, M., Bellows, C. G. & Aubin, J. E. Ultrastructural analysis of bone nodules formed in vitro by isolated fetal rat calvaria cells. Bone 9, 155–163 (1988).

    CAS  Article  Google Scholar 

  8. 8.

    Mechiche Alami, S., Gangloff, S. C., Laurent-Maquin, D., Wang, Y. & Kerdjoudj, H. Concise review: in vitro formation of bone-like nodules sheds light on the application of stem cells for bone regeneration. Stem Cells Transl. Med 5, 1587–1593 (2016).

    Article  Google Scholar 

  9. 9.

    Nefussi, J. R., Boy-Lefevre, M. L., Boulekbache, H. & Forest, N. Mineralization in vitro of matrix formed by osteoblasts isolated by collagenase digestion. Differentiation 29, 160–168 (1985).

    CAS  Article  Google Scholar 

  10. 10.

    Morris, D. C., Masuhara, K., Takaoka, K., Ono, K. & Anderson, H. C. Immunolocalization of alkaline phosphatase in osteoblasts and matrix vesicles of human fetal bone. Bone Miner. 19, 287–298 (1992).

    CAS  Article  Google Scholar 

  11. 11.

    Jaiswal, N., Haynesworth, S. E., Caplan, A. I. & Bruder, S. P. Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. J. Cell. Biochem. 64, 295–312 (1997).

    CAS  Article  Google Scholar 

  12. 12.

    Langenbach, F. & Handschel, J. Effects of dexamethasone, ascorbic acid and beta-glycerophosphate on the osteogenic differentiation of stem cells in vitro. Stem Cell. Res. Ther. 4, 117 (2013).

    Article  Google Scholar 

  13. 13.

    Robinton, D. A. & Daley, G. Q. The promise of induced pluripotent stem cells in research and therapy. Nature 481, 295–305 (2012).

    CAS  Article  Google Scholar 

  14. 14.

    Bilousova, G. et al. Osteoblasts derived from induced pluripotent stem cells form calcified structures in scaffolds both in vitro and in vivo. Stem Cells 29, 206–216 (2011).

    CAS  Article  Google Scholar 

  15. 15.

    Fukuta, M. et al. Derivation of mesenchymal stromal cells from pluripotent stem cells through a neural crest lineage using small molecule compounds with defined media. PLoS ONE 9, e112291 (2014).

    Article  Google Scholar 

  16. 16.

    Kanke, K. et al. Stepwise differentiation of pluripotent stem cells into osteoblasts using four small molecules under serum-free and feeder-free conditions. Stem Cell Rep. 2, 751–760 (2014).

    CAS  Article  Google Scholar 

  17. 17.

    Loh, K. M. et al. Mapping the pairwise choices leading from pluripotency to human bone, heart, and other mesoderm cell types. Cell 166, 451–467 (2016).

    CAS  Article  Google Scholar 

  18. 18.

    Zujur, D., Kanke, K. & Lichtler, A. C. Three-dimensional system enabling the maintenance and directed differentiation of pluripotent stem cells under defined conditions. Sci. Adv. 3, e1602875 (2017).

    Article  Google Scholar 

  19. 19.

    Ochiai-Shino, H. et al. A novel strategy for enrichment and isolation of osteoprogenitor cells from induced pluripotent stem cells based on surface marker combination. PLoS ONE 9, e99534 (2014).

    Article  Google Scholar 

  20. 20.

    Matsumoto, Y. et al. Induced pluripotent stem cells from patients with human fibrodysplasia ossificans progressiva show increased mineralization and cartilage formation. Orphanet J. Rare Dis. 8, 190 (2013).

    Article  Google Scholar 

  21. 21.

    Jeradi, S. & Hammerschmidt, M. Retinoic acid-induced premature osteoblast-to-preosteocyte transitioning has multiple effects on calvarial development. Development 143, 1205–1216 (2016).

    CAS  Article  Google Scholar 

  22. 22.

    Hisada, K. et al. Retinoic acid regulates commitment of undifferentiated mesenchymal stem cells into osteoblasts and adipocytes. J. Bone Miner. Metab. 31, 53–63 (2013).

    CAS  Article  Google Scholar 

  23. 23.

    Henning, P., Conaway, H. H. & Lerner, U. H. Retinoid receptors in bone and their role in bone remodeling. Front. Endocrinol. 6, 31 (2015).

    Article  Google Scholar 

  24. 24.

    Van Dijk, F. S. & Sillence, D. O. Osteogenesis imperfecta: clinical diagnosis, nomenclature and severity assessment. Am. J. Med. Genet. A 164a, 1470–1481 (2014).

    Article  Google Scholar 

  25. 25.

    Oceguera-Yanez, F. et al. Engineering the AAVS1 locus for consistent and scalable transgene expression in human iPSCs and their differentiated derivatives. Methods 101, 43–55 (2016).

    CAS  Article  Google Scholar 

  26. 26.

    Akahane, M. et al. Osteogenic matrix sheet-cell transplantation using osteoblastic cell sheet resulted in bone formation without scaffold at an ectopic site. J. Tissue Eng. Regen. Med. 2, 196–201 (2008).

    CAS  Article  Google Scholar 

  27. 27.

    Kim, Y. J., Lee, M. H., Wozney, J. M., Cho, J. Y. & Ryoo, H. M. Bone morphogenetic protein-2-induced alkaline phosphatase expression is stimulated by Dlx5 and repressed by Msx2. J. Biol. Chem. 279, 50773–50780 (2004).

    CAS  Article  Google Scholar 

  28. 28.

    Gong, Y. et al. LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell 107, 513–523 (2001).

    CAS  Article  Google Scholar 

  29. 29.

    Dolle, P., Ruberte, E., Leroy, P., Morriss-Kay, G. & Chambon, P. Retinoic acid receptors and cellular retinoid binding proteins. I. A systematic study of their differential pattern of transcription during mouse organogenesis. Development 110, 1133–1151 (1990).

    CAS  PubMed  Google Scholar 

  30. 30.

    Ruberte, E., Dolle, P., Chambon, P. & Morriss-Kay, G. Retinoic acid receptors and cellular retinoid binding proteins. II. Their differential pattern of transcription during early morphogenesis in mouse embryos. Development 111, 45–60 (1991).

    CAS  PubMed  Google Scholar 

  31. 31.

    Mark, M., Ghyselinck, N. B. & Chambon, P. Function of retinoic acid receptors during embryonic development. Nucl. Recept Signal 7, e002 (2009).

    Article  Google Scholar 

  32. 32.

    Okita, K. et al. A more efficient method to generate integration-free human iPS cells. Nat. Methods 8, 409–412 (2011).

    CAS  Article  Google Scholar 

  33. 33.

    Forlino, A., Cabral, W. A., Barnes, A. M. & Marini, J. C. New perspectives on osteogenesis imperfecta. Nat. Rev. Endocrinol. 7, 540–557 (2011).

    CAS  Article  Google Scholar 

  34. 34.

    Forlino, A. & Marini, J. C. Osteogenesis imperfecta. Lancet 387, 1657–1671 (2016).

    CAS  Article  Google Scholar 

  35. 35.

    Lisse, T. S. et al. ER stress-mediated apoptosis in a new mouse model of osteogenesis imperfecta. PLoS Genet 4, e7 (2008).

    Article  Google Scholar 

  36. 36.

    Gioia, R. et al. Impaired osteoblastogenesis in a murine model of dominant osteogenesis imperfecta: a new target for osteogenesis imperfecta pharmacological therapy. Stem Cells 30, 1465–1476 (2012).

    CAS  Article  Google Scholar 

  37. 37.

    Ishida, Y. & Nagata, K. Autophagy eliminates a specific species of misfolded procollagen and plays a protective role in cell survival against ER stress. Autophagy 5, 1217–1219 (2009).

    Article  Google Scholar 

  38. 38.

    Mirigian, L. S. et al. Osteoblast malfunction caused by cell stress response to procollagen misfolding in ɑ2(I)-G610C mouse model of osteogenesis imperfecta. J. Bone Miner. Res. 31, 1608–1616 (2016).

    CAS  Article  Google Scholar 

  39. 39.

    Nollet, M. et al. Autophagy in osteoblasts is involved in mineralization and bone homeostasis. Autophagy 10, 1965–1977 (2014).

    Article  Google Scholar 

  40. 40.

    Li, H. Defective autophagy in osteoblasts induces endoplasmic reticulum stress and causes remarkable bone loss. Atuophagy 14, 1726–1741 (2018).

    CAS  Article  Google Scholar 

  41. 41.

    Kang, H., Shih, Y. R., Nakasaki, M., Kabra, H. & Varghese, S. Small molecule-driven direct conversion of human pluripotent stem cells into functional osteoblasts. Sci. Adv. 2, e1600691 (2016).

    Article  Google Scholar 

  42. 42.

    Jeon, O. H. et al. Human iPSC-derived osteoblasts and osteoclasts together promote bone regeneration in 3D biomaterials. Sci. Rep. 6, 26761 (2016).

    CAS  Article  Google Scholar 

  43. 43.

    Baron, R. & Kneissel, M. WNT signaling in bone homeostasis and disease: from human mutations to treatments. Nat. Med. 19, 179–192 (2013).

    CAS  Article  Google Scholar 

  44. 44.

    Reddi, A. H. Role of morphogenetic proteins in skeletal tissue engineering and regeneration. Nat. Biotechnol. 16, 247–252 (1998).

    CAS  Article  Google Scholar 

  45. 45.

    Paralkar, V. M. et al. Regulation of BMP-7 expression by retinoic acid and prostaglandin E2. J. Cell. Physiol. 190, 207–217 (2002).

    CAS  Article  Google Scholar 

  46. 46.

    Zhang, S. et al. All-trans retinoic acid modulates Wnt3A-induced osteogenic differentiation of mesenchymal stem cells via activating the PI3K/AKT/GSK3β signalling pathway. Mol. Cell. Endocrinol. 422, 243–253 (2016).

    CAS  Article  Google Scholar 

  47. 47.

    Liu, Y. et al. All-trans retinoic acid modulates bone morphogenic protein 9-induced osteogenesis and adipogenesis of preadipocytes through BMP/Smad and Wnt/β-catenin signaling pathways. Int. J. Biochem. Cell Biol. 47, 47–56 (2014).

    CAS  Article  Google Scholar 

  48. 48.

    Orimo, H. & Shimada, T. Regulation of the human tissue-nonspecific alkaline phosphatase gene expression by all-trans-retinoic acid in SaOS-2 osteosarcoma cell line. Bone 36, 866–876 (2005).

    CAS  Article  Google Scholar 

  49. 49.

    Zhang, W. et al. Retinoic acids potentiate BMP9-induced osteogenic differentiation of mesenchymal progenitor cells. PLoS ONE 5, e11917 (2010).

    Article  Google Scholar 

  50. 50.

    Shimono, K. et al. Potent inhibition of heterotopic ossification by nuclear retinoic acid receptor-ɣ agonists. Nat. Med. 17, 454–460 (2011).

    CAS  Article  Google Scholar 

  51. 51.

    Conaway, H. H. et al. Retinoids stimulate periosteal bone resorption by enhancing the protein RANKL, a response inhibited by monomeric glucocorticoid receptor. J. Biol. Chem. 286, 31425–31436 (2011).

    CAS  Article  Google Scholar 

  52. 52.

    Kang, H., Aryal, A. C. S. & Marini, J. C. Osteogenesis imperfecta: new genes reveal novel mechanisms in bone dysplasia. Transl. Res. 181, 27–48 (2017).

    CAS  Article  Google Scholar 

  53. 53.

    Lindahl, K. et al. Genetic epidemiology, prevalence, and genotype-phenotype correlations in the Swedish population with osteogenesis imperfecta. Eur. J. Hum. Genet. 23, 1042–1050 (2015).

    CAS  Article  Google Scholar 

  54. 54.

    Deyle, D. R. et al. Normal collagen and bone production by gene-targeted human osteogenesis imperfecta iPSCs. Mol. Ther. 20, 204–213 (2012).

    CAS  Article  Google Scholar 

  55. 55.

    Jin, Y. et al. Mesenchymal stem cells cultured under hypoxia escape from senescence via down-regulation of p16 and extracellular signal regulated kinase. Biochem. Biophys. Res. Commun. 391, 1471–1476 (2010).

    CAS  Article  Google Scholar 

  56. 56.

    Nakagawa, M. et al. A novel efficient feeder-free culture system for the derivation of human induced pluripotent stem cells. Sci. Rep. 4, 3594 (2014).

    Article  Google Scholar 

  57. 57.

    Barruet, E. et al. The ACVR1 R206H mutation found in fibrodysplasia ossificans progressiva increases human induced pluripotent stem cell-derived endothelial cell formation and collagen production through BMP-mediated SMAD1/5/8 signaling. Stem Cell. Res. Ther. 7, 115 (2016).

    Article  Google Scholar 

  58. 58.

    Shibata, K. et al. Expression of the p16INK4A gene is associated closely with senescence of human mesenchymal stem cells, and potentially silenced by DNA methylation during in vitro expansion. Stem Cells 25, 2371–2382 (2007).

    CAS  Article  Google Scholar 

  59. 59.

    Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872 (2007).

    CAS  Article  Google Scholar 

  60. 60.

    Li, H. L. et al. Precise correction of the dystrophin gene in duchenne muscular dystrophy patient induced pluripotent stem cells by TALEN and CRISPR-Cas9. Stem Cell Rep. 4, 143–154 (2015).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank Y. Matsumoto for his contribution in preliminary experiments; K. Hino for advice on the in vivo experiments and microarray analysis; M. Watanabe, K. Horigome and T. Takarada for invaluable comments and discussion; Y. Pretemer and R. Kashimoto for experimental supports; K. Woltjen for providing the 317–12 iPS cell line; A. Hotta and H. Xu for advice on gene editing; and P. Karagiannis for reading the manuscript. Preparation of the microscope slides was supported by staff at the Center for Anatomical, Pathological and Forensic Medical Research, Graduate School of Medicine, Kyoto University. This work was supported by Grants-in-aid for Scientific Research from Japan Society for the Promotion of Science (no. 17K19725), Research Center Network for Realization of Regenerative Medicine, The Core Center for iPS Cell Research and The Program for Intractable Diseases Research utilizing Disease-specific iPS from Japan Science and Technology Agency and Japan Agency for Medical Research and Development (AMED), The Acceleration Program for Intractable Diseases Research utilizing Disease-specific iPS cells from AMED to J.T., and The Advanced Research and Development Programs for Medical Innovation (CREST) from AMED to J.S. and T.A. These funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Affiliations

Authors

Contributions

S.K., H.Y. and J.T. designed the research and wrote the manuscript. J.S. performed imaging studies. C.A., M.I., Y.J., T.A. and S.M. advised on the project. M.H., Y.K. and S.T. established and maintained iPSCs. M.N., K.S. and H.M. helped with animal experiments. S.N. and M.U. helped with in vitro experiments. Y.H. and K.F. provided patient samples and clinical information. All authors provided feedback on the manuscript.

Corresponding author

Correspondence to Junya Toguchida.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary figures, tables and video captions.

Reporting Summary

Supplementary Video 1

Reconstructed 3D view of bone-like nodule formation.

Supplementary Video 2

Reconstructed vertical view of bone-like nodule formation.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kawai, S., Yoshitomi, H., Sunaga, J. et al. In vitro bone-like nodules generated from patient-derived iPSCs recapitulate pathological bone phenotypes. Nat Biomed Eng 3, 558–570 (2019). https://doi.org/10.1038/s41551-019-0410-7

Download citation

Further reading