Orthotopic replacement of T-cell receptor α- and β-chains with preservation of near-physiological T-cell function

Abstract

Therapeutic T cells with desired specificity can be engineered by introducing T-cell receptors (TCRs) specific for antigens of interest, such as those from pathogens or tumour cells. However, TCR engineering is challenging, owing to the complex heterodimeric structure of the receptor and to competition and mispairing between endogenous and transgenic receptors. Additionally, conventional TCR insertion disrupts the regulation of TCR dynamics, with consequences for T-cell function. Here, we report the outcomes and validation, using five different TCRs, of the use of clustered regularly interspaced short palindromic repeats (CRISPR)–CRISPR-associated protein 9 (Cas9) with non-virally delivered template DNA for the elimination of endogenous TCR chains and for the orthotopic placement of TCRs in human T cells. We show that, whereas the editing of a single receptor chain results in chain mispairing, simultaneous editing of α- and β-chains combined with orthotopic TCR placement leads to accurate αβ-pairing and results in TCR regulation similar to that of physiological T cells.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Advanced T-cell engineering through non-viral CRISPR–Cas9-mediated KI of TCRs into the endogenous TCR gene locus.
Fig. 2: Antigen-specific maximum cytokine release and functional avidity of retrovirally transduced (with or without TRAC KO) and TRAC-KI T cells.
Fig. 3: Mispairing with endogenous β-chain occurs in transduced or TRAC-only edited T cells.
Fig. 4: α and β editing eliminates mispairing and enhances TCR surface expression of weak TCRs.
Fig. 5: Orthotopic TCR α- and β-chain replacement enables most physiological T-cell engineering.
Fig. 6: Physiological TCR downregulation after orthotopic TCR α- and β-chain replacement.

Data availability

The authors declare that all data generated or analysed for this study are available within the paper and its Supplementary Information. The sequences of HDR DNA templates are provided in the Supplementary Dataset. Additional raw data are available from the corresponding author upon reasonable request.

References

  1. 1.

    June, C. H., Riddell, S. R. & Schumacher, T. N. Adoptive cellular therapy: a race to the finish line. Sci. Transl. Med. 7, 280ps7 (2015).

    PubMed  Article  CAS  Google Scholar 

  2. 2.

    Kolb, H. J. et al. Donor leukocyte transfusions for treatment of recurrent chronic myelogenous leukemia in marrow transplant patients. Blood 76, 2462–2465 (1990).

    CAS  PubMed  Article  Google Scholar 

  3. 3.

    Rosenberg, S. A., Spiess, P. & Lafreniere, R. A new approach to the adoptive immunotherapy of cancer with tumor-infiltrating lymphocytes. Science 233, 1318–1321 (1986).

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    Riddell, S. R. et al. Restoration of viral immunity in immunodeficient humans by the adoptive transfer of T cell clones. Science 257, 238–241 (1992).

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Schreiber, R. D., Old, L. J. & Smyth, M. J. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science 331, 1565–1570 (2011).

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    Price, D. A. et al. T cell receptor recognition motifs govern immune escape patterns in acute SIV infection. Immunity 21, 793–803 (2004).

    CAS  PubMed  Article  Google Scholar 

  7. 7.

    Levine, A. G., Arvey, A., Jin, W. & Rudensky, A. Y. Continuous requirement for the TCR in regulatory T cell function. Nat. Immunol. 15, 1070–1078 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  8. 8.

    Cobbold, M. et al. Adoptive transfer of cytomegalovirus-specific CTL to stem cell transplant patients after selection by HLA-peptide tetramers. J. Exp. Med. 202, 379–386 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. 9.

    Neuenhahn, M. et al. Transfer of minimally manipulated CMV-specific T cells from stem cell or third-party donors to treat CMV infection after allo-HSCT. Leukemia 31, 2161–2171 (2017).

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    Blyth, E., Withers, B., Clancy, L. & Gottlieb, D. CMV-specific immune reconstitution following allogeneic stem cell transplantation. Virulence 7, 967–980 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. 11.

    Morgan, R. A. et al. Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 314, 126–129 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. 12.

    Robbins, P. F. et al. Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J. Clin. Oncol. 29, 917–924 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  13. 13.

    Rapoport, A. P. et al. NY-ESO-1-specific TCR-engineered T cells mediate sustained antigen-specific antitumor effects in myeloma. Nat. Med. 21, 914–921 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  14. 14.

    Schrum, A. G., Turka, L. A. & Palmer, E. Surface T-cell antigen receptor expression and availability for long-term antigenic signaling. Immunol. Rev. 196, 7–24 (2003).

    CAS  PubMed  Article  Google Scholar 

  15. 15.

    Gallegos, A. M. et al. Control of T cell antigen reactivity via programmed TCR downregulation. Nat. Immunol. 17, 379–386 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. 16.

    Dembić, Z. et al. Transfer of specificity by murine α and β T-cell receptor genes. Nature 320, 232–238 (1986).

    PubMed  Article  PubMed Central  Google Scholar 

  17. 17.

    Thomas, S. et al. Targeting the Wilms tumor antigen 1 by TCR gene transfer: TCR variants improve tetramer binding but not the function of gene modified human T cells. J. Immunol. 179, 5803–5810 (2007).

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Bendle, G. M. et al. Lethal graft-versus-host disease in mouse models of T cell receptor gene therapy. Nat. Med. 16, 565–570 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  19. 19.

    van Loenen, M. M. et al. Mixed T cell receptor dimers harbor potentially harmful neoreactivity. Proc. Natl Acad. Sci. USA 107, 10972–10977 (2010).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  20. 20.

    Stanislawski, T. et al. Circumventing tolerance to a human MDM2-derived tumor antigen by TCR gene transfer. Nat. Immunol. 2, 962–970 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  21. 21.

    Cohen, C. J., Zhao, Y., Zheng, Z., Rosenberg, S. A. & Morgan, R. A. Enhanced antitumor activity of murine-human hybrid T-cell receptor (TCR) in human lymphocytes is associated with improved pairing and TCR/CD3 stability. Cancer Res. 66, 8878–8886 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. 22.

    Kuball, J. et al. Facilitating matched pairing and expression of TCR chains introduced into human T cells. Blood 109, 2331–2338 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. 23.

    Cohen, C. J. et al. Enhanced antitumor activity of T cells engineered to express T-cell receptors with a second disulfide bond. Cancer Res. 67, 3898–3903 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. 24.

    Scholten, K. B. J. et al. Codon modification of T cell receptors allows enhanced functional expression in transgenic human T cells. Clin. Immunol. 119, 135–145 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  25. 25.

    Voss, R.-H. et al. Coexpression of the T-cell receptor constant α domain triggers tumor reactivity of single-chain TCR-transduced human T cells. Blood 115, 5154–5163 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  26. 26.

    Bethune, M. T. et al. Domain-swapped T cell receptors improve the safety of TCR gene therapy. eLife 5, 1–24 (2016).

    Article  Google Scholar 

  27. 27.

    Govers, C. et al. TCRs genetically linked to CD28 and CD3ε do not mispair with endogenous TCR chains and mediate enhanced T cell persistence and anti-melanoma activity. J. Immunol. 193, 5315–5326 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  28. 28.

    Provasi, E. et al. Editing T cell specificity towards leukemia by zinc finger nucleases and lentiviral gene transfer. Nat. Med. 18, 807–815 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. 29.

    Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. 30.

    Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. 31.

    Mali, P., Esvelt, K. M. & Church, G. M. Cas9 as a versatile tool for engineering biology. Nat. Methods 10, 957–963 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. 32.

    Ren, J. et al. Multiplex genome editing to generate universal CAR T cells resistant to PD1 Inhibition. Clin. Cancer Res. 23, 2255–2266 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. 33.

    Legut, M., Dolton, G., Mian, A. A., Ottmann, O. & Sewell, A. CRISPR-mediated TCR replacement generates superior anticancer transgenic T-cells. Blood 131, 311–322 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. 34.

    Eyquem, J. et al. Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection. Nature 543, 113–117 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. 35.

    Roth, T. L. et al. Reprogramming human T cell function and specificity with non-viral genome targeting. Nature 559, 405–409 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. 36.

    Schumann, K. et al. Generation of knock-in primary human T cells using Cas9 ribonucleoproteins. Proc. Natl Acad. Sci. USA 112, 10437–10442 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  37. 37.

    Suzuki, K. et al. In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration. Nature 540, 144–149 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. 38.

    Slaymaker, I. M. et al. Rationally engineered Cas9 nucleases with improved specificity. Science 351, 84–88 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  39. 39.

    Vakulskas, C. A. et al. A high-fidelity Cas9 mutant delivered as a ribonucleoprotein complex enables efficient gene editing in human hematopoietic stem and progenitor cells. Nat. Med. 24, 1216–1224 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. 40.

    Sommermeyer, D. et al. Designer T cells by T cell receptor replacement. Eur. J. Immunol. 36, 3052–3059 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  41. 41.

    Mastaglio, S. et al. NY-ESO-1 TCR single edited stem and central memory T cells to treat multiple myeloma without graft-versus-host disease. Blood 130, 606–618 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  42. 42.

    Heemskerk, M. H. M. et al. Efficiency of T-cell receptor expression in dual-specific T cells is controlled by the intrinsic qualities of the TCR chains within the TCR–CD3 complex. Blood 109, 235–243 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  43. 43.

    Sommermeyer, D. & Uckert, W. Minimal amino acid exchange in human TCR constant regions fosters improved function of TCR gene-modified T cells. J. Immunol. 184, 6223–6231 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  44. 44.

    de Vree, P. J. P. et al. Targeted sequencing by proximity ligation for comprehensive variant detection and local haplotyping. Nat. Biotechnol. 32, 1019–1025 (2014).

    PubMed  Article  CAS  Google Scholar 

  45. 45.

    Van Loenen, M. M. et al. Rapid re-expression of retrovirally introduced versusendogenous TCRs in engineered T cells afterantigen-specific stimulation. J. Immunother. 34, 165–174 (2011).

    PubMed  Article  Google Scholar 

  46. 46.

    Knabel, M. et al. Reversible MHC multimer staining for functional isolation of T-cell populations and effective adoptive transfer. Nat. Med. 8, 631–637 (2002).

    CAS  PubMed  Article  Google Scholar 

  47. 47.

    Stemberger, C. et al. Lowest numbers of primary CD8+ T cells can reconstitute protective immunity upon adoptive immunotherapy. Blood 124, 628–637 (2014).

    CAS  PubMed  Article  Google Scholar 

  48. 48.

    Graef, P. et al. Serial transfer of single-cell-derived immunocompetence reveals stemness of CD8+ central memory T cells. Immunity 41, 116–126 (2014).

    CAS  PubMed  Article  Google Scholar 

  49. 49.

    Riesenberg, S. & Maricic, T. Targeting repair pathways with small molecules increases precise genome editing in pluripotent stem cells. Nat. Commun. 9, 2164 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  50. 50.

    Dössinger, G. et al. MHC multimer-guided and cell culture-independent isolation of functional T cell receptors from single cells facilitates TCR identification for immunotherapy. PLoS ONE 8, e61384 (2013).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  51. 51.

    Nakagawa, S., Niimura, Y., Gojobori, T., Tanaka, H. & Miura, K. Diversity of preferred nucleotide sequences around the translation initiation codon in eukaryote genomes. Nucleic Acids Res. 36, 861–871 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  52. 52.

    Busch, D. H. & Pamer, E. G. MHC class I/peptide stability: implications for immunodominance, in vitro proliferation, and diversity of responding CTL. J. Immunol. 160, 4441–4448 (1998).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank members of the Busch laboratory for experimental help and critical discussion, particularly M. Hammel, F. Mohr, S. Dötsch, E. d’Ippolito and V. R. Buchholz. We also thank L. Germeroth (Juno Therapeutics) for critical discussion. This work was mainly supported by the German Centre for Infection Research (DZIF).

Author information

Affiliations

Authors

Contributions

K.Schober and D.H.B. conceived the study. K.Schober, T.R.M. and D.H.B. designed and analysed experiments. K.Schober, T.R.M. and F.G. performed CRISPR editing and transductions. F.G. performed double-stranded DNA production and gDNA analysis. S.G. performed FACS. T.R.M. and M.E. identified TCRs. M.E. produced pMHC reagents. K.Schober and T.R.M. performed flow cytometric analyses and functional assays. M.P., C.S., K.Schumann and A.M. advised on CRISPR–Cas9 RNP editing of T cells. T.L.R. and A.M. developed and advised on non-viral CRISPR–Cas9 large gene KI via HDR. K.Schober, T.R.M. and T.L.R. designed HDR DNA templates. K.Schober, T.R.M. and D.H.B. wrote the manuscript. All authors read and reviewed the manuscript.

Corresponding author

Correspondence to Dirk H. Busch.

Ethics declarations

Competing interests

D.H.B. is co-founder of STAGE Cell Therapeutics GmbH (now Juno Therapeutics/Celgene) and T Cell Factory B.V. (now Kite/Gilead). D.H.B. has a consulting contract with and receives sponsored research support from Juno Therapeutics/Celgene. M.P. and C.S. are employees of Juno Therapeutics/Celgene. A.M. is on the scientific advisory board of PACT Pharma, serves as an advisor to Sonoma Biotherapeutics and previously served as an advisor to Juno Therapeutics and is a co-founder of Spotlight Therapeutics and Arsenal Biosciences. T.L.R. is a co-founder of Arsenal Biosciences. The Marson lab has received sponsored research support from Epinomics, Juno Therapeutics and Sanofi, and a gift from Gilead. A.M. and T.L.R. have previously filed related patent applications.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary figures.

Reporting Summary

Supplementary Dataset

Sequences of HDR DNA templates.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Schober, K., Müller, T.R., Gökmen, F. et al. Orthotopic replacement of T-cell receptor α- and β-chains with preservation of near-physiological T-cell function. Nat Biomed Eng 3, 974–984 (2019). https://doi.org/10.1038/s41551-019-0409-0

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing