Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A complex human gut microbiome cultured in an anaerobic intestine-on-a-chip

An Author Correction to this article was published on 18 June 2019

This article has been updated


The diverse bacterial populations that comprise the commensal microbiome of the human intestine play a central role in health and disease. A method that sustains complex microbial communities in direct contact with living human intestinal cells and their overlying mucus layer in vitro would thus enable the investigation of host–microbiome interactions. Here, we show the extended coculture of living human intestinal epithelium with stable communities of aerobic and anaerobic human gut microbiota, using a microfluidic intestine-on-a-chip that permits the control and real-time assessment of physiologically relevant oxygen gradients. When compared to aerobic coculture conditions, the establishment of a transluminal hypoxia gradient in the chip increased intestinal barrier function and sustained a physiologically relevant level of microbial diversity, consisting of over 200 unique operational taxonomic units from 11 different genera and an abundance of obligate anaerobic bacteria, with ratios of Firmicutes and Bacteroidetes similar to those observed in human faeces. The intestine-on-a-chip may serve as a discovery tool for the development of microbiome-related therapeutics, probiotics and nutraceuticals.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Oxygen-sensitive human Intestine Chip microfluidic culture device.
Fig. 2: Coculture of human intestinal epithelium and B. fragilis on-chip.
Fig. 3: Analysis of the diversity and relative abundance of microbiota cocultured in Intestine Chips under aerobic and anaerobic conditions.
Fig. 4: Anaerobic conditions in the Intestine Chip enhance the growth of multiple genera compared to the aerobic chip and conventional liquid culture.
Fig. 5: Anaerobic coculture of a gut microbiome obtained from fresh human patient-derived stool with primary human ileal epithelium in the Intestine Chip.

Data availability

The main data supporting the findings of this study are available in the Article and Supplementary Information. The raw data generated in this study are available from the corresponding author on reasonable request.

Change history

  • 18 June 2019

    In the version of this Article originally published, the authors mistakenly cited Fig. 5d in the sentence beginning ‘Importantly, the microbiome cultured in these primary Intestine Chips...’; the correct citation is Supplementary Table 2. This has now been amended.


  1. 1.

    Cho, I. & Blaser, M. J. The human microbiome: at the interface of health and disease. Nat. Rev. Genet. 13, 260–270 (2012).

    CAS  Article  Google Scholar 

  2. 2.

    Donaldson, G. P., Lee, S. M. & Mazmanian, S. K. Gut biogeography of the bacterial microbiota. Nat. Rev. Microbiol. 14, 20–32 (2016).

    CAS  Article  Google Scholar 

  3. 3.

    Pickard, J. M., Zeng, M. Y., Caruso, R. & Núñez, G. Gut microbiota: role in pathogen colonization, immune responses, and inflammatory disease. Immunol. Rev. 279, 70–89 (2017).

    CAS  Article  Google Scholar 

  4. 4.

    Sommer, F. & Bäckhed, F. The gut microbiota—masters of host development and physiology. Nat. Rev. Microbiol. 11, 227–238 (2013).

    CAS  Article  Google Scholar 

  5. 5.

    Walter, J. & Ley, R. The human gut microbiome: ecology and recent evolutionary changes. Annu. Rev. Microbiol. 65, 411–429 (2011).

    CAS  Article  Google Scholar 

  6. 6.

    Sommer, M. O. Advancing gut microbiome research using cultivation. Curr. Opin. Microbiol. 27, 127–132 (2015).

    CAS  Article  Google Scholar 

  7. 7.

    Eain, M. M. G. et al. Engineering solutions for representative models of the gastrointestinal human-microbe interface. Engineering 3, 60–65 (2017).

    Article  Google Scholar 

  8. 8.

    Fritz, J. V., Desai, M. S., Shah, P., Schneider, J. G. & Wilmes, P. From meta-omics to causality: experimental models for human microbiome research. Microbiome 1, 14 (2013).

    Article  Google Scholar 

  9. 9.

    Arrieta, M.-C., Walter, J. & Finlay, B. B. Human microbiota-associated mice: a model with challenges. Cell Host Microbe 19, 575–578 (2016).

    CAS  Article  Google Scholar 

  10. 10.

    Nguyen, T. L. A., Vieira-Silva, S., Liston, A. & Raes, J. How informative is the mouse for human gut microbiota research? Dis. Model. Mech. 8, 1–16 (2015).

    CAS  Article  Google Scholar 

  11. 11.

    Sadabad, M. S. et al. A simple coculture system shows mutualism between anaerobic Faecalibacteria and epithelial Caco-2 cells. Sci. Rep. 5, 17906 (2015).

    Article  Google Scholar 

  12. 12.

    Dutta, D. & Clevers, H. Organoid culture systems to study host–pathogen interactions. Curr. Opin. Immunol. 48, 15–22 (2017).

    CAS  Article  Google Scholar 

  13. 13.

    Fatehullah, A., Tan, S. H. & Barker, N. Organoids as an in vitro model of human development and disease. Nat. Cell Biol. 18, 246–254 (2016).

    Article  Google Scholar 

  14. 14.

    Williamson, I. A. et al. A high-throughput organoid microinjection platform to study gastrointestinal microbiota and luminal physiology. Cell. Mol. Gastroenterol. Hepatol. 6, 301–319 (2018).

    Article  Google Scholar 

  15. 15.

    Bein, A. et al. Microfluidic organ-on-a-chip models of human intestine. Cell. Mol. Gastroenterol. Hepatol. 5, 659–668 (2018).

    Article  Google Scholar 

  16. 16.

    Van den Abbeele, P. et al. Incorporating a mucosal environment in a dynamic gut model results in a more representative colonization by lactobacilli. Microb. Biotechnol. 5, 106–115 (2012).

    Article  Google Scholar 

  17. 17.

    Marzorati, M. et al. The HMITM module: a new tool to study the Host-Microbiota Interaction in the human gastrointestinal tract in vitro. BMC Microbiol. 14, 133 (2014).

    Article  Google Scholar 

  18. 18.

    Van de Wiele, T., et al. in The Impact of Food Bioactives on Health: In Vitro and Ex Vivo Models (eds Verhoeckx, K. et al.) 305–317 (Springer, 2015).

  19. 19.

    Van den Abbeele, P. et al. Microbial community development in a dynamic gut model is reproducible, colon region specific, and selective for Bacteroidetes and Clostridium cluster IX. Appl. Environ. Microbiol. 76, 5237–5246 (2010).

    Article  Google Scholar 

  20. 20.

    Kim, H. J., Huh, D., Hamilton, G. & Ingber, D. E. Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. Lab Chip 12, 2165–2174 (2012).

    CAS  Article  Google Scholar 

  21. 21.

    Kim, H. J., Li, H., Collins, J. J. & Ingber, D. E. Contributions of microbiome and mechanical deformation to intestinal bacterial overgrowth and inflammation in a human gut-on-a-chip. Proc. Natl Acad. Sci. USA 113, E7–E15 (2016).

    CAS  Article  Google Scholar 

  22. 22.

    Park, G.-S. et al. Emulating host-microbiome ecosystem of human gastrointestinal tract in vitro. Stem Cell Rev. 13, 321–334 (2017).

    CAS  Article  Google Scholar 

  23. 23.

    Chung, H. et al. Gut immune maturation depends on colonization with a host-specific microbiota. Cell 149, 1578–1593 (2012).

    CAS  Article  Google Scholar 

  24. 24.

    Surana, N. K. & Kasper, D. L. Moving beyond microbiome-wide associations to causal microbe identification. Nature 552, 244–247 (2017).

    CAS  Article  Google Scholar 

  25. 25.

    Jalili-Firoozinezhad, S. et al. Modeling radiation injury-induced cell death and countermeasure drug responses in a human Gut-on-a-Chip. Cell Death Dis. 9, 223 (2018).

    Article  Google Scholar 

  26. 26.

    Kasendra, M. et al. Development of a primary human Small Intestine-on-a-Chip using biopsy-derived organoids. Sci. Rep. 8, 2871 (2018).

    Article  Google Scholar 

  27. 27.

    Zheng, L., Kelly, C. J. & Colgan, S. P. Physiologic hypoxia and oxygen homeostasis in the healthy intestine. A review in the theme: cellular responses to hypoxia. Am. J. Physiol. Cell Physiol. 309, C350–C360 (2015).

    CAS  Article  Google Scholar 

  28. 28.

    Jiang, B. H., Semenza, G. L., Bauer, C. & Marti, H. H. Hypoxia-inducible factor 1 levels vary exponentially over a physiologically relevant range of O2 tension. Am. J. Physiol. Cell Physiol. 271, C1172–C1180 (1996).

    CAS  Article  Google Scholar 

  29. 29.

    Chilov, D. et al. Induction and nuclear translocation of hypoxia-inducible factor-1 (HIF-1): heterodimerization with ARNT is not necessary for nuclear accumulation of HIF-1alpha. J. Cell Sci. 112, 1203–1212 (1999).

    CAS  PubMed  Google Scholar 

  30. 30.

    Surana, N. K. & Kasper, D. L. The yin yang of bacterial polysaccharides: lessons learned from B. fragilis PSA. Immunol. Rev. 245, 13–26 (2012).

    CAS  Article  Google Scholar 

  31. 31.

    Patrick, S., Reid, J. H. & Larkin, M. J. The growth and survival of capsulate and non-capsulate Bacteroides fragilis in vivo and in vitro. J. Med. Microbiol. 17, 237–246 (1984).

    CAS  Article  Google Scholar 

  32. 32.

    Hudak, J. E., Alvarez, D., Skelly, A., von Andrian, U. H. & Kasper, D. L. Illuminating vital surface molecules of symbionts in health and disease. Nat. Microbiol. 2, 17099 (2017).

    CAS  Article  Google Scholar 

  33. 33.

    Shin, W. & Kim, H. J. Intestinal barrier dysfunction orchestrates the onset of inflammatory host–microbiome cross-talk in a human gut inflammation-on-a-chip. Proc. Natl Acad. Sci. USA 115, E10539–E10547 (2018).

    CAS  Article  Google Scholar 

  34. 34.

    Kuo, J. C.-H. et al. Detection of colorectal dysplasia using fluorescently labelled lectins. Sci. Rep. 6, 24231 (2016).

    CAS  Article  Google Scholar 

  35. 35.

    Kim, H. J. & Ingber, D. E. Gut-on-a-Chip microenvironment induces human intestinal cells to undergo villus differentiation. Integr. Biol. 5, 1130–1140 (2013).

    CAS  Article  Google Scholar 

  36. 36.

    Rozee, K. R., Cooper, D., Lam, K. & Costerton, J. W. Microbial flora of the mouse ileum mucous layer and epithelial surface. Appl. Environ. Microbiol. 43, 1451–1463 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Lock, J. Y., Carlson, T. L., Wang, C.-M., Chen, A. & Carrier, R. L. Acute exposure to commonly ingested emulsifiers alters intestinal mucus structure and transport properties. Sci. Rep. 8, 10008 (2018).

    Article  Google Scholar 

  38. 38.

    Villmones, H. C. et al. Species level description of the human ileal bacterial microbiota. Sci. Rep. 8, 4736 (2018).

    Article  Google Scholar 

  39. 39.

    The Human Microbiome Project ConsortiumStructure, function and diversity of the healthy human microbiome. Nature 486, 207–214 (2012).

  40. 40.

    Stearns, J. C. et al. Bacterial biogeography of the human digestive tract. Sci. Rep. 1, 170 (2011).

    CAS  Article  Google Scholar 

  41. 41.

    Guarner, F. & Malagelada, J.-R. Gut flora in health and disease. Lancet 361, 512–519 (2003).

    Article  Google Scholar 

  42. 42.

    Wang, M., Ahrné, S., Jeppsson, B. & Molin, G. Comparison of bacterial diversity along the human intestinal tract by direct cloning and sequencing of 16S rRNA genes. FEMS Microbiol. Ecol. 54, 219–231 (2005).

    CAS  Article  Google Scholar 

  43. 43.

    Fujio-Vejar, S. et al. The gut microbiota of healthy Chilean subjects reveals a high abundance of the phylum Verrucomicrobia. Front. Microbiol. 8, 1221 (2017).

    Article  Google Scholar 

  44. 44.

    Schneeberger, M. et al. Akkermansia muciniphila inversely correlates with the onset of inflammation, altered adipose tissue metabolism and metabolic disorders during obesity in mice. Sci. Rep. 5, 16643 (2015).

    CAS  Article  Google Scholar 

  45. 45.

    Everard, A. et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc. Natl Acad. Sci. USA 110, 9066–9071 (2013).

    CAS  Article  Google Scholar 

  46. 46.

    Shah, P. et al. A microfluidics-based in vitro model of the gastrointestinal human–microbe interface. Nat. Commun. 7, 11535 (2016).

    CAS  Article  Google Scholar 

  47. 47.

    Pedicord, V. A. et al. Exploiting a host-commensal interaction to promote intestinal barrier function and enteric pathogen tolerance. Sci. Immunol. 1, eaai7732 (2016).

    Article  Google Scholar 

  48. 48.

    Sheridan, W. G., Lowndes, R. H. & Young, H. L. Intraoperative tissue oximetry in the human gastrointestinal tract. Am. J. Surg. 159, 314–319 (1990).

    CAS  Article  Google Scholar 

  49. 49.

    He, G. et al. Noninvasive measurement of anatomic structure and intraluminal oxygenation in the gastrointestinal tract of living mice with spatial and spectral EPR imaging. Proc. Natl Acad. Sci. USA 96, 4586–4591 (1999).

    CAS  Article  Google Scholar 

  50. 50.

    Ohland, C. L. & Jobin, C. Microbial activities and intestinal homeostasis: a delicate balance between health and disease. Cell. Mol. Gastroenterol. Hepatol. 1, 28–40 (2015).

    Article  Google Scholar 

  51. 51.

    Flint, H. J., Scott, K. P., Louis, P. & Duncan, S. H. The role of the gut microbiota in nutrition and health. Nat. Rev. Gastroenterol. Hepatol. 9, 577–589 (2012).

    CAS  Article  Google Scholar 

  52. 52.

    Albenberg, L. et al. Correlation between intraluminal oxygen gradient and radial partitioning of intestinal microbiota in humans and mice. Gastroenterology 147, 1055–1063 (2014).

    Article  Google Scholar 

  53. 53.

    Baughn, A. D. & Malamy, M. H. The strict anaerobe Bacteroides fragilis grows in and benefits from nanomolar concentrations of oxygen. Nature 427, 441–444 (2004).

    CAS  Article  Google Scholar 

  54. 54.

    Hsiao, E. Y. et al. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell 155, 1451–1463 (2013).

    CAS  Article  Google Scholar 

  55. 55.

    Clemente, J. C., Ursell, L. K., Parfrey, L. W. & Knight, R. The impact of the gut microbiota on human health: an integrative view. Cell 148, 1258–1270 (2012).

    CAS  Article  Google Scholar 

  56. 56.

    Shin, N.-R., Whon, T. W. & Bae, J.-W. Proteobacteria: microbial signature of dysbiosis in gut microbiota. Trends Biotechnol. 33, 496–503 (2015).

    CAS  Article  Google Scholar 

  57. 57.

    Goodman, A. L. et al. Extensive personal human gut microbiota culture collections characterized and manipulated in gnotobiotic mice. Proc. Natl Acad. Sci. USA 108, 6252–6257 (2011).

    CAS  Article  Google Scholar 

  58. 58.

    Karhausen, J. et al. Epithelial hypoxia-inducible factor-1 is protective in murine experimental colitis. J. Clin. Invest. 114, 1098–1106 (2004).

    CAS  Article  Google Scholar 

  59. 59.

    Manresa, M. C. & Taylor, C. T. Hypoxia inducible factor (HIF) hydroxylases as regulators of intestinal epithelial barrier function. Cell. Mol. Gastroenterol. Hepatol. 3, 303–315 (2017).

    Article  Google Scholar 

  60. 60.

    Cirstea, M., Radisavljevic, N. & Finlay, B. B. Good bug, bad bug: breaking through microbial stereotypes. Cell Host Microbe 23, 10–13 (2018).

    CAS  Article  Google Scholar 

  61. 61.

    Workman, M. J. et al. Enhanced utilization of induced pluripotent stem cell–derived human intestinal organoids using microengineered chips. Cell. Mol. Gastroenterol. Hepatol. 5, 669–677 (2018).

    Article  Google Scholar 

  62. 62.

    Hooper, L. V., Littman, D. R. & Macpherson, A. J. Interactions between the microbiota and the immune system. Science 336, 1268–1273 (2012).

    CAS  Article  Google Scholar 

  63. 63.

    Rimoldi, M. et al. Intestinal immune homeostasis is regulated by the crosstalk between epithelial cells and dendritic cells. Nat. Immunol. 6, 507–514 (2005).

    CAS  Article  Google Scholar 

  64. 64.

    Henry, O. Y. F. et al. Organs-on-chips with integrated electrodes for trans-epithelial electrical resistance (TEER) measurements of human epithelial barrier function. Lab Chip 17, 2264–2271 (2017).

    CAS  Article  Google Scholar 

  65. 65.

    Huh, D. et al. Microfabrication of human organs-on-chips. Nat. Protoc. 8, 2135–2157 (2013).

    CAS  Article  Google Scholar 

  66. 66.

    Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9, 62–66 (1979).

    Article  Google Scholar 

  67. 67.

    McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).

    CAS  Article  Google Scholar 

  68. 68.

    Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article  Google Scholar 

Download references


This research was supported by a US FDA grant (HHSF223201310079C), a DARPA THoR grant (W911NF-16-C-0050), the Bill & Melinda Gates Foundation, the Wyss Institute for Biologically Inspired Engineering at Harvard University and Fundação para a Ciência e a Tecnologia Portugal (project PD/BD/105774/2014 at the Institute for Bioengineering and Biosciences). We thank D. E. Achatz (PreSens GmbH) for providing oxygen-sensing particles and for her expert technical advice and T. Ferrante for his assistance with imaging.

Author information




S.J.-F., F.S.G., E.L.C., J.M.S.C., R.N. and D.E.I. designed the research. S.J.-F., E.L.C., F.S.G., B.N., C.W.F., A.T., A.B., B.S. and M.J.C. performed experiments. S.J.-F., F.S.G., D.M.C., E.L.C., B.N., D.L.K., R.N. and D.E.I. analysed and interpreted the data. K.E.G. helped to prepare infant microbiota. D.T.B. established and prepared human ileal organoids. S.J.-F., F.S.G., E.L.C., D.M.C. and D.E.I. wrote the Article with input from B.N., O.L., J.M.S.C. and R.N. All authors reviewed, discussed and edited the manuscript.

Corresponding author

Correspondence to Donald E. Ingber.

Ethics declarations

Competing interests

D.E.I. holds equity in Emulate, Inc., consults for the company and chairs its scientific advisory board.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary Information

Supplementary figures and tables.

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jalili-Firoozinezhad, S., Gazzaniga, F.S., Calamari, E.L. et al. A complex human gut microbiome cultured in an anaerobic intestine-on-a-chip. Nat Biomed Eng 3, 520–531 (2019).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing