Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Spectral tracing of deuterium for imaging glucose metabolism


Cells and tissues often display pronounced spatial and dynamical metabolic heterogeneity. Common glucose-imaging techniques report glucose uptake or catabolism activity, yet do not trace the functional utilization of glucose-derived anabolic products. Here we report a microscopy technique for the optical imaging, via the spectral tracing of deuterium (STRIDE), of diverse macromolecules derived from glucose. Based on stimulated Raman-scattering imaging, STRIDE visualizes the metabolic dynamics of newly synthesized macromolecules, such as DNA, protein, lipids and glycogen, via the enrichment and distinct spectra of carbon–deuterium bonds transferred from the deuterated glucose precursor. STRIDE can also use spectral differences derived from different glucose isotopologues to visualize temporally separated glucose populations using a pulse–chase protocol. We also show that STRIDE can be used to image glucose metabolism in many mouse tissues, including tumours, brain, intestine and liver, at a detection limit of 10 mM of carbon–deuterium bonds. STRIDE provides a high-resolution and chemically informative assessment of glucose anabolic utilization.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: SRS imaging of overall metabolic activity by [D7]-glucose labelling.
Fig. 2: Principle of STRIDE.
Fig. 3: Multiplexed imaging of macromolecule biosynthesis activity using STRIDE of [D7]-glucose.
Fig. 4: STRIDE imaging in mouse tissue.
Fig. 5: STRIDE imaging of protein and lipid biosynthesis in mouse brain.
Fig. 6: STRIDE imaging reveals fast and unidirectional lipid absorption in newborn mouse intestine.
Fig. 7: Pulse–chase STRIDE imaging of metabolic dynamics through sequentially labelled [D7]- and [D2]- glucose.

Data availability

The authors declare that all data supporting the results of this study are available within the paper and its Supplementary Information. All raw and processed images generated in this work are available from the corresponding author on reasonable request.


  1. 1.

    Saltiel, A. R. & Kahn, C. R. Insulin signalling and the regulation of glucose and lipid metabolism. Nature 414, 799–806 (2001).

    CAS  Article  Google Scholar 

  2. 2.

    Hensley, C. T. et al. Metabolic heterogeneity in human lung tumors. Cell 164, 681–694 (2016).

    CAS  Article  Google Scholar 

  3. 3.

    Vander Heiden, M. G. & DeBerardinis, R. J. Understanding the intersections between metabolism and cancer biology. Cell 168, 657–669 (2017).

    Article  Google Scholar 

  4. 4.

    Pipeleers, D. G. Heterogeneity in pancreatic β-cell population. Diabetes 41, 777–781 (1992).

    CAS  Article  Google Scholar 

  5. 5.

    Halpern, K. B. et al. Single-cell spatial reconstruction reveals global division of labour in the mammalian liver. Nature 542, 1–5 (2017).

    Article  Google Scholar 

  6. 6.

    Gambhir, S. S. Molecular imaging of cancer with positron emission tomography. Nat. Rev. Cancer 2, 683–693 (2002).

    CAS  Article  Google Scholar 

  7. 7.

    Walker-Samuel, S. et al. In vivo imaging of glucose uptake and metabolism in tumors. Nat. Med. 19, 1067–1072 (2013).

    CAS  Article  Google Scholar 

  8. 8.

    Rodrigues, T. B. et al. Magnetic resonance imaging of tumor glycolysis using hyperpolarized 13C-labeled glucose. Nat. Med. 20, 93–97 (2013).

    Article  Google Scholar 

  9. 9.

    Sugiura, Y. et al. Visualization of in vivo metabolic flows reveals accelerated utilization of glucose and lactate in penumbra of ischemic heart. Sci. Rep. 6, 32361 (2016).

    CAS  Article  Google Scholar 

  10. 10.

    Guillermier, C., Poczatek, J. C., Taylor, W. R. & Steinhauser, M. L. Quantitative imaging of deuterated metabolic tracers in biological tissues with nanoscale secondary ion mass spectrometry. ‎Int. J. Mass Spectrom. 422, 42–50 (2017).

    CAS  Article  Google Scholar 

  11. 11.

    Zou, C., Wang, Y. & Shen, Z. 2-NBDG as a fluorescent indicator for direct glucose uptake measurement. J. Biochem. Biophys. Methods 64, 207–215 (2005).

    CAS  Article  Google Scholar 

  12. 12.

    Hu, F. et al. Vibrational imaging of glucose uptake activity in live cells and tissues by stimulated Raman scattering. Angew. Chem. Int. Ed. 54, 9821–9825 (2015).

    CAS  Article  Google Scholar 

  13. 13.

    Nelson, D. & Cox, M. Lehninger Principles of Biochemistry 4th edn (W. H. Freeman, 2005).

  14. 14.

    Chen, Y. J. et al. Differential incorporation of glucose into biomass during Warburg metabolism. Biochemistry 53, 4755–4757 (2014).

    CAS  Article  Google Scholar 

  15. 15.

    Lunt, S. Y. & Vander Heiden, M. G. Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu. Rev. Cell Dev. Biol. 27, 441–464 (2011).

    CAS  Article  Google Scholar 

  16. 16.

    Otero, Y. F., Stafford, J. M. & McGuinness, O. P. Pathway-selective insulin resistance and metabolic disease: the importance of nutrient flux. J. Biol. Chem. 289, 20462–20469 (2014).

    CAS  Article  Google Scholar 

  17. 17.

    Uyeda, K. & Repa, J. J. Carbohydrate response element binding protein, ChREBP, a transcription factor coupling hepatic glucose utilization and lipid synthesis. Cell Metab. 4, 107–110 (2006).

    CAS  Article  Google Scholar 

  18. 18.

    Freudiger, C. W. et al. Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy. Science 322, 1857–1861 (2008).

    CAS  Article  Google Scholar 

  19. 19.

    Min, W., Freudiger, C. W., Lu, S. & Xie, X. S. Coherent nonlinear optical imaging: beyond fluorescence microscopy. Annu. Rev. Phys. Chem. 62, 507–530 (2011).

    CAS  Article  Google Scholar 

  20. 20.

    Chung, C.-Y. & Potma, E. O. Biomolecular imaging with coherent nonlinear vibrational microscopy. Annu. Rev. Phys. Chem. 64, 77–99 (2013).

    CAS  Article  Google Scholar 

  21. 21.

    Cheng, J.-X. & Xie, X. S. Vibrational spectroscopic imaging of living systems: an emerging platform for biology and medicine. Science 350, aaa8870 (2015).

    Article  Google Scholar 

  22. 22.

    Zhao, Z., Shen, Y., Hu, F. & Min, W. Applications of vibrational tags in biological imaging by Raman microscopy. Analyst 142, 4018–4029 (2017).

    CAS  Article  Google Scholar 

  23. 23.

    Wei, L. et al. Live-cell bioorthogonal chemical imaging: stimulated Raman scattering microscopy of vibrational probes. Acc. Chem. Res. 49, 1494–1502 (2016).

    CAS  Article  Google Scholar 

  24. 24.

    Li, M., Huang, W. E., Gibson, C. M., Fowler, P. W. & Jousset, A. Stable isotope probing and Raman spectroscopy for monitoring carbon flow in a food chain and revealing metabolic pathway. Anal. Chem. 85, 1642–1649 (2013).

    CAS  Article  Google Scholar 

  25. 25.

    Li, J. & Cheng, J.-X. Direct visualization of de novo lipogenesis in single living cells. Sci. Rep. 4, 6807 (2015).

    Article  Google Scholar 

  26. 26.

    Long, R. et al. Two-color vibrational imaging of glucose metabolism by stimulated Raman scattering. Chem Commun. 54, 152–155 (2017).

    Article  Google Scholar 

  27. 27.

    Sun, R. C. et al. Noninvasive liquid diet delivery of stable isotopes into mouse models for deep metabolic network tracing. Nat. Commun. 8, 1646 (2017).

    Article  Google Scholar 

  28. 28.

    Longhi, G., Zerbi, G., Paterlini, G., Ricard, L. & Abbate, S. Conformational dependence of CH(CD)-strechings in d-glucose and some deuterated derivatives as revealed by infrared and Raman spectroscopy. Carbohydr. Res. 161, 1–22 (1987).

    CAS  Article  Google Scholar 

  29. 29.

    Orringer, D. A. et al. Rapid intraoperative histology of unprocessed surgical specimens via fibre-laser-based stimulated Raman scattering microscopy. Nat. Biomed. Eng. 1, 0027 (2017).

    Article  Google Scholar 

  30. 30.

    Jung, Y., Tam, J., Jalian, H. R., Anderson, R. R. & Evans, C. L. Longitudinal, 3D in vivo imaging of sebaceous glands by coherent anti-stokes Raman scattering microscopy: normal function and response to cryotherapy. J. Invest. Dermatol. 135, 39–44 (2015).

    Article  Google Scholar 

  31. 31.

    Yoshikawa, F. et al. Opalin, a transmembrane sialylglycoprotein located in the central nervous system myelin paranodal loop membrane. J. Biol. Chem. 283, 20830–20840 (2008).

    CAS  Article  Google Scholar 

  32. 32.

    Bercury, K. K. & Macklin, W. B. Dynamics and mechanisms of CNS myelination. Dev. Cell 32, 447–458 (2015).

    CAS  Article  Google Scholar 

  33. 33.

    Jurevics, H. & Morell, P. Cholesterol for synthesis of myelin is made locally, not imported into brain. J. Neurochem. 64, 895–901 (1995).

    CAS  Article  Google Scholar 

  34. 34.

    Cannon, B. & Nedergaard, J. Brown adipose tissue: function and physiological significance. Physiol. Rev. 84, 277–359 (2004).

    CAS  Article  Google Scholar 

  35. 35.

    Brehar, F. M. et al. The development of xenograft glioblastoma implants in nude mice brain. J. Med. Life 1, 275–286 (2008).

    CAS  PubMed  Google Scholar 

  36. 36.

    Flores, C. A., Hing, S. A., Wells, M. A. & Koldovsky, O. Rates of triolein absorption in suckling and adult rats. Am. J. Physiol. Liver Physiol. 257, G823–G829 (1989).

    CAS  Google Scholar 

  37. 37.

    Lindquist, S. & Hernell, O. Lipid digestion and absorption in early life: an update. Curr. Opin. Clin. Nutr. Metab. Care 13, 314–320 (2010).

    CAS  Article  Google Scholar 

  38. 38.

    Pácha, J. Development of intestinal transport function in mammals. Physiol. Rev. 80, 1633–1667 (2000).

    Article  Google Scholar 

  39. 39.

    Alberts, B. et al. Molecular Biology of the Cell 4th edn (Garland Science, 2002).

  40. 40.

    Gaietta, G. et al. Multicolor and electron microscopic imaging of connexin trafficking. Science 296, 503–507 (2002).

    CAS  Article  Google Scholar 

  41. 41.

    Dieterich, D. C. et al. In situ visualization and dynamics of newly synthesized proteins in rat hippocampal neurons. Nat. Neurosci. 13, 897–905 (2010).

    CAS  Article  Google Scholar 

  42. 42.

    Wei, L. et al. Imaging complex protein metabolism in live organisms by stimulated Raman scattering microscopy with isotope labeling. ACS Chem. Biol. 10, 901–908 (2015).

    CAS  Article  Google Scholar 

  43. 43.

    Lewis, C. A. et al. Tracing compartmentalized nadph metabolism in the cytosol and mitochondria of mammalian cells. Mol. Cell 55, 253–263 (2014).

    CAS  Article  Google Scholar 

  44. 44.

    Liu, L. et al. Malic enzyme tracers reveal hypoxia-induced switch in adipocyte NADPH pathway usage. Nat. Chem. Biol. 12, 345–352 (2016).

    CAS  Article  Google Scholar 

  45. 45.

    Kudryavtseva, M. V., Sakuta, G. A., Stein, G. I. & Kudryavtsev, BN. The metabolic zonation of glycogen synthesis in rat liver after fasting and refeeding. Tissue Cell 24, 31–35 (1992).

    CAS  Article  Google Scholar 

  46. 46.

    Jungermann, K. & Katz, N. Functional specialization of different hepatocyte populations. Physiol. Rev. 69, 708–764 (1989).

    CAS  Article  Google Scholar 

  47. 47.

    Fu, D. et al. In vivo metabolic fingerprinting of neutral lipids with hyperspectral stimulated Raman scattering microscopy. J. Am. Chem. Soc. 136, 8820–8828 (2014).

    CAS  Article  Google Scholar 

  48. 48.

    Zhang, L. & Min, W. Bioorthogonal chemical imaging of metabolic changes during epithelial-mesenchymal transition of cancer cells by stimulated Raman scattering microscopy. J. Biomed. Opt. 22, 1–7 (2017).

    CAS  PubMed  Google Scholar 

  49. 49.

    Hou, J., Williams, J., Botvinick, E., Potma, E. & Tromberg, B. J. Visualization of breast cancer metabolism using multimodal non-linear optical microscopy of cellular lipids and redox state. Cancer Res. 78, 2503–2512 (2018).

    CAS  Article  Google Scholar 

  50. 50.

    Hong, W. et al. Antibiotic susceptibility determination within one cell cycle at single-bacterium level by stimulated Raman metabolic imaging. Anal. Chem. 90, 3737–3743 (2018).

    CAS  Article  Google Scholar 

  51. 51.

    Saar, B. G. et al. Video-rate molecular imaging in vivo with stimulated Raman scattering. Science 330, 1368–1370 (2010).

    CAS  Article  Google Scholar 

  52. 52.

    Saar, B. G., Johnston, R. S., Freudiger, C. W., Xie, X. S. & Seibel, E. J. Coherent Raman scanning fiber endoscopy. Opt. Lett. 36, 2396 (2011).

    Article  Google Scholar 

  53. 53.

    Shen, Y., Xu, F., Wei, L., Hu, F. & Min, W. Live-cell quantitative imaging of proteome degradation by stimulated Raman scattering. Angew. Chem. Int. Ed. 53, 5596–5599 (2014).

    CAS  Article  Google Scholar 

  54. 54.

    Wei, L. et al. Live-cell imaging of alkyne-tagged small biomolecules by stimulated Raman scattering. Nat. Methods 11, 410–412 (2014).

    CAS  Article  Google Scholar 

  55. 55.

    Lu, F.-K. et al. Label-free DNA imaging in vivo with stimulated Raman scattering microscopy. Proc. Natl Acad. Sci. USA 112, 11624–11629 (2015).

    CAS  Article  Google Scholar 

Download references


We thank F. Hu and C. Zheng for suggestions on this manuscript. W.M. acknowledges support from a National Institutes of Health Director’s New Innovator Award (1DP2EB016573), NIH R01 (grant EB020892), the Alfred P. Sloan Foundation, the Camille and Henry Dreyfus Foundation and a Pilot and Feasibility grant from the New York Obesity Nutrition Research Center.

Author information




L.Z., L.S., Y.S. and W.M. designed the experiment. L.Z. and L.S. performed mouse labelling and imaging. L.Z., M.W., Y.L. and L.S. performed macromolecule isolation and analysis. Y.M. and N.Q. performed NMR measurement and analysis. L.Z., L.S., Y.S. and Y.M. analysed the data. Y. S., L.Z. and W.M. wrote the manuscript with contributions from all authors.

Corresponding author

Correspondence to Wei Min.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary Information

Supplementary figures, tables, discussion, references and video caption.

Reporting Summary

Supplementary Video 1

SRS imaging of glucose metabolism in the skin of the ears of a living mouse.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Shi, L., Shen, Y. et al. Spectral tracing of deuterium for imaging glucose metabolism. Nat Biomed Eng 3, 402–413 (2019).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing