Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A microphysiological model of the bronchial airways reveals the interplay of mechanical and biochemical signals in bronchospasm


In asthma, the contraction of the airway smooth muscle and the subsequent decrease in airflow involve a poorly understood set of mechanical and biochemical events. Organ-level and molecular-scale models of the airway are frequently based on purely mechanical or biochemical considerations and do not account for physiological mechanochemical couplings. Here, we present a microphysiological model of the airway that allows for the quantitative analysis of the interactions between mechanical and biochemical signals triggered by compressive stress on epithelial cells. We show that a mechanical stimulus mimicking a bronchospastic challenge triggers the marked contraction and delayed relaxation of airway smooth muscle, and that this is mediated by the discordant expression of cyclooxygenase genes in epithelial cells and regulated by the mechanosensor and transcriptional co-activator Yes-associated protein. A mathematical model of the intercellular feedback interactions recapitulates aspects of obstructive disease of the airways, which include pathognomonic features of severe difficult-to-treat asthma. The microphysiological model could be used to investigate the mechanisms of asthma pathogenesis and to develop therapeutic strategies that disrupt the positive feedback loop that leads to persistent airway constriction.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Bronchial-chip results indicate positive feedback between smooth-muscle contraction and compressive stress on epithelium.
Fig. 2: Longer-term intercellular interaction through eicosanoid production.
Fig. 3: Eicosanoid production is regulated by the modulation of cyclooxygenase isozymes by compressive stress.
Fig. 4: Compressive stress is relayed to cyclooxygenase through the mechanosensor YAP.
Fig. 5: Positive and negative feedback between NHBE and HASM.
Fig. 6: Mechanochemical feedback interactions can underlie distinct modes of bronchospasm.

Data availability

The authors declare that all data supporting the findings of this study are available within the paper and its Supplementary Information. The source data for the figures in this study are available in figshare (


  1. 1.

    Bates, J. Toward a nonlinear network theory of complex disease. In International Conference on Complex Systems 1–7 (NECSI, 2006).

  2. 2.

    Venegas, J. G. et al. Self-organized patchiness in asthma as a prelude to catastrophic shifts. Nature 434, 777–782 (2005).

    CAS  Article  Google Scholar 

  3. 3.

    Winkler, T. & Venegas, J. G. Self-organized patterns of airway narrowing. J. Appl. Physiol. 110, 1482–1486 (2011).

    Article  Google Scholar 

  4. 4.

    Suki, B. & Frey, U. Temporal dynamics of recurrent airway symptoms and cellular random walk. J. Appl. Physiol. 95, 2122–2127 (2003).

    Article  Google Scholar 

  5. 5.

    Mauroy, B., Filoche, M., Weibel, E. & Sapoval, B. An optimal bronchial tree may be dangerous. Nature 427, 633–636 (2004).

    CAS  Article  Google Scholar 

  6. 6.

    Alam, R. & Gorska, M. M. Mitogen‐activated protein kinase signalling and ERK1/2 bistability in asthma. Clin. Exp. Allergy 41, 149–159 (2011).

    CAS  Article  Google Scholar 

  7. 7.

    Lambert, R. K., Wilson, T. A., Hyatt, R. E. & Rodarte, J. R. A computational model for expiratory flow. J. Appl. Physiol. 52, 44–56 (1982).

    CAS  Article  Google Scholar 

  8. 8.

    Anafi, R. C. & Wilson, T. A. Airway stability and heterogeneity in the constricted lung. J. Appl. Physiol. 91, 1185–1192 (2001).

    CAS  Article  Google Scholar 

  9. 9.

    Donovan, G. M., Sneyd, J. & Tawhai, M. H. The importance of synergy between deep inspirations and fluidization in reversing airway closure. PLoS ONE 7, e48552 (2012).

    CAS  Article  Google Scholar 

  10. 10.

    Huber, H. L. & Koessler, K. K. The pathology of bronchial asthma. Arch. Intern. Med. 30, 689–760 (1922).

    Article  Google Scholar 

  11. 11.

    James, A. L., Paré, P. D. & Hogg, J. C. The mechanics of airway narrowing in asthma. Am. Rev. Respir. Dis. 139, 242–246 (1989).

    CAS  Article  Google Scholar 

  12. 12.

    Wiggs, B. R., Hrousis, C. A., Drazen, J. M. & Kamm, R. D. On the mechanism of mucosal folding in normal and asthmatic airways. J. Appl. Physiol. 83, 1814–1821 (1997).

    CAS  Article  Google Scholar 

  13. 13.

    Okada, S. F. et al. Inflammation promotes airway epithelial ATP release via calcium-dependent vesicular pathways. Am. J. Respir. Cell Mol. Biol. 49, 814–820 (2013).

    CAS  Article  Google Scholar 

  14. 14.

    Savla, U., Sporn, P. H. & Waters, C. M. Cyclic stretch of airway epithelium inhibits prostanoid synthesis. Am. J. Physiol. Lung Cell. Mol. Physiol. 273, L1013–L1019 (1997).

    CAS  Article  Google Scholar 

  15. 15.

    Arold, S. P., Malavia, N. & George, S. C. Mechanical compression attenuates normal human bronchial epithelial wound healing. Respir. Res. 10, 9 (2009).

    Article  Google Scholar 

  16. 16.

    Copland, I. B., Reynaud, D., Pace-Asciak, C. & Post, M. Mechanotransduction of stretch-induced prostanoid release by fetal lung epithelial cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 291, L487–L495 (2006).

    CAS  Article  Google Scholar 

  17. 17.

    Burnstock, G. Purine-mediated signalling in pain and visceral perception. Trends Pharmacol. Sci. 22, 182–188 (2001).

    CAS  Article  Google Scholar 

  18. 18.

    Ferguson, D., Kennedy, I. & Burton, T. ATP is released from rabbit urinary bladder epithelial cells by hydrostatic pressure changes–possible sensory mechanism? J. Physiol. 505, 503–511 (1997).

    CAS  Article  Google Scholar 

  19. 19.

    Cuthbert, M. Effect on airways resistance of prostaglandin E1 given by aerosol to healthy and asthmatic volunteers. Br. Med. J. 4, 723–726 (1969).

    CAS  Article  Google Scholar 

  20. 20.

    Sweatman W. & Collier H. Effects of prostaglandins on human bronchial muscle. Nature 217, 69 (1968).

  21. 21.

    Mathé, A. A. & Hedqvist, P. Effect of prostaglandins F2α and E2 on airway conductance in healthy subjects and asthmatic patients. Am. Rev. Respir. Dis. 111, 313–320 (1975).

    PubMed  Google Scholar 

  22. 22.

    Hanna, C., Bach, M., Pare, P. & Schellenberg, R. Slow-reacting substances (leukotrienes) contract human airway and pulmonary vascular smooth muscle in vitro. Nature 290, 343–344 (1981).

    CAS  Article  Google Scholar 

  23. 23.

    Xiong, W. & Ferrell, J. E. A positive-feedback-based bistable ‘memory module’ that governs a cell fate decision. Nature 426, 460–465 (2003).

    CAS  Article  Google Scholar 

  24. 24.

    Tian, X.-J., Zhang, X.-P., Liu, F. & Wang, W. Interlinking positive and negative feedback loops creates a tunable motif in gene regulatory networks. Phys. Rev. E 80, 011926 (2009).

    Article  Google Scholar 

  25. 25.

    Lavoie, T. L. et al. Dilatation of the constricted human airway by tidal expansion of lung parenchyma. Am. J. Respir. Crit. Care Med. 186, 225–232 (2012).

    CAS  Article  Google Scholar 

  26. 26.

    LaPrad, A. S., Szabo, T. L., Suki, B. & Lutchen, K. R. Tidal stretches do not modulate responsiveness of intact airways in vitro. J. Appl. Physiol. 109, 295–304 (2010).

    CAS  Article  Google Scholar 

  27. 27.

    LaPrad, A. S., West, A. R., Noble, P. B., Lutchen, K. R. & Mitchell, H. W. Maintenance of airway caliber in isolated airways by deep inspiration and tidal strains. J. Appl. Physiol. 105, 479–485 (2008).

    Article  Google Scholar 

  28. 28.

    Noble, P. B. et al. Responsiveness of the human airway in vitro during deep inspiration and tidal oscillation. J. Appl. Physiol. 110, 1510–1518 (2011).

    CAS  Article  Google Scholar 

  29. 29.

    Park, J.-A. et al. Unjamming and cell shape in the asthmatic airway epithelium. Nat. Mater. 14, 1040–1048 (2015).

    CAS  Article  Google Scholar 

  30. 30.

    Noble, P., Sharma, A., McFawn, P. & Mitchell, H. Elastic properties of the bronchial mucosa: epithelial unfolding and stretch in response to airway inflation. J. Appl. Physiol. 99, 2061–2066 (2005).

    CAS  Article  Google Scholar 

  31. 31.

    Huh, D. et al. Reconstituting organ-level lung functions on a chip. Science 328, 1662–1668 (2010).

    CAS  Article  Google Scholar 

  32. 32.

    West, A. R. et al. Development and characterization of a 3D multicell microtissue culture model of airway smooth muscle. Am. J. Physiol. Lung Cell. Mol. Physiol. 304, L4–L16 (2012).

    Article  Google Scholar 

  33. 33.

    Benam, K. H. et al. Small airway-on-a-chip enables analysis of human lung inflammation and drug responses in vitro. Nat. Methods 13, 151–157 (2016).

    CAS  Article  Google Scholar 

  34. 34.

    Noble, P. B., McFawn, P. K. & Mitchell, H. W. Responsiveness of the isolated airway during simulated deep inspirations: effect of airway smooth muscle stiffness and strain. J. Appl. Physiol. 103, 787–795 (2007).

    Article  Google Scholar 

  35. 35.

    Vanhoutte, P. M. Epithelium-derived relaxing factor(s) and bronchial reactivity. J. Allergy Clin. Immunol. 83, 855–861 (1989).

    CAS  Article  Google Scholar 

  36. 36.

    Park, J.-A. & Tschumperlin, D. J. Chronic intermittent mechanical stress increases MUC5AC protein expression. Am. J. Respir. Cell Mol. Biol. 41, 459–466 (2009).

    CAS  Article  Google Scholar 

  37. 37.

    Tschumperlin, D. J. et al. Mechanotransduction through growth-factor shedding into the extracellular space. Nature 429, 83–86 (2004).

    CAS  Article  Google Scholar 

  38. 38.

    Wang, N., Butler, J. P. & Ingber, D. E. Mechanotransduction across the cell surface and through the cytoskeleton. Science 260, 1124–1127 (1993).

    CAS  Article  Google Scholar 

  39. 39.

    Wang, N. et al. Cell prestress. I. Stiffness and prestress are closely associated in adherent contractile cells. Am. J. Physiol. Cell Physiol. 282, C606–C616 (2002).

    CAS  Article  Google Scholar 

  40. 40.

    An, S. S., Laudadio, R. E., Lai, J., Rogers, R. A. & Fredberg, J. J. Stiffness changes in cultured airway smooth muscle cells. Am. J. Physiol. Cell Physiol. 283, C792–C801 (2002).

    CAS  Article  Google Scholar 

  41. 41.

    An, S. S., Fabry, B., Trepat, X., Wang, N. & Fredberg, J. J. Do biophysical properties of the airway smooth muscle in culture predict airway hyperresponsiveness? Am. J. Respir. Cell Mol. Biol. 35, 55–64 (2006).

    CAS  Article  Google Scholar 

  42. 42.

    Ressler, B., Lee, R. T., Randell, S. H., Drazen, J. M. & Kamm, R. D. Molecular responses of rat tracheal epithelial cells to transmembrane pressure. Am. J. Physiol. Lung Cell. Mol. Physiol. 278, L1264–L1272 (2000).

    CAS  Article  Google Scholar 

  43. 43.

    Swartz, M., Tschumperlin, D. J., Kamm, R. & Drazen, J. Mechanical stress is communicated between different cell types to elicit matrix remodeling. Proc. Natl Acad. Sci. USA 98, 6180–6185 (2001).

    CAS  Article  Google Scholar 

  44. 44.

    Yoon, A.-R. et al. COX-2 dependent regulation of mechanotransduction in human breast cancer cells. Cancer Biol. Ther. 16, 430–437 (2015).

    CAS  Article  Google Scholar 

  45. 45.

    Obermajer, N., Muthuswamy, R., Lesnock, J., Edwards, R. P. & Kalinski, P. Positive feedback between PGE2 and COX2 redirects the differentiation of human dendritic cells toward stable myeloid-derived suppressor cells. Blood 118, 5498–5505 (2011).

    CAS  Article  Google Scholar 

  46. 46.

    Dupont, S. et al. Role of YAP/TAZ in mechanotransduction. Nature 474, 179–183 (2011).

    CAS  Article  Google Scholar 

  47. 47.

    Halder, G., Dupont, S. & Piccolo, S. Transduction of mechanical and cytoskeletal cues by YAP and TAZ. Nat. Rev. Mol. Cell Biol. 13, 591–600 (2012).

    CAS  Article  Google Scholar 

  48. 48.

    An, S. S. et al. An inflammation-independent contraction mechanophenotype of airway smooth muscle in asthma. J. Allergy Clin. Immunol. 138, 294 (2016).

    Article  Google Scholar 

  49. 49.

    Tilley, S. L. et al. Receptors and pathways mediating the effects of prostaglandin E2 on airway tone. Am. J. Physiol. Lung Cell. Mol. Physiol. 284, L599–L606 (2003).

    CAS  Article  Google Scholar 

  50. 50.

    O’Sullivan, M. J. et al. Epithelial cells induce a cyclo-oxygenase-1–dependent endogenous reduction in airway smooth muscle contractile phenotype. Am. J. Respir. Cell Mol. Biol. 57, 683–691 (2017).

    Article  Google Scholar 

  51. 51.

    Pfeuty, B. & Kaneko, K. The combination of positive and negative feedback loops confers exquisite flexibility to biochemical switches. Phys. Biol. 6, 046013 (2009).

    Article  Google Scholar 

  52. 52.

    Wenzel, S. E. et al. Proceedings of the ATS workshop on refractory asthma. Am. J. Respir. Crit. Care Med. 162, 2341–2351 (2000).

    Article  Google Scholar 

  53. 53.

    Bateman, E. et al. Global strategy for asthma management and prevention: GINA executive summary. Eur. Respir. J. 31, 143–178 (2008).

    CAS  Article  Google Scholar 

  54. 54.

    Zhou, J., Alvarez-Elizondo, M. B., Botvinick, E. & George, S. C. Local small airway epithelial injury induces global smooth muscle contraction and airway constriction. J. Appl. Physiol. 112, 627–637 (2012).

    CAS  Article  Google Scholar 

  55. 55.

    Zhou, J., Alvarez-Elizondo, M. B., Botvinick, E. & George, S. C. Adenosine A1 and prostaglandin e receptor 3 receptors mediate global airway contraction after local epithelial injury. Am. J. Respir. Cell Mol. Biol. 48, 299–305 (2013).

    CAS  Article  Google Scholar 

  56. 56.

    Orehek, J., Douglas, J. S. & Bouhuys, A. Contractile responses of the guinea-pig trachea in vitro: modification by prostaglandin synthesis-inhibiting drugs. J. Pharmacol. Exp. Ther. 194, 554–564 (1975).

    CAS  PubMed  Google Scholar 

  57. 57.

    Gao, Y. & Vanhoutte, P. M. Responsiveness of the guinea pig trachea to stretch: role of the epithelium and cyclooxygenase products. J. Appl. Physiol. 75, 2112–2116 (1993).

    CAS  Article  Google Scholar 

  58. 58.

    Kullmann, F. A., Shah, M. A., Birder, L. A. & de Groat, W. C. Functional TRP and ASIC-like channels in cultured urothelial cells from the rat. Am. J. Physiol. Renal Physiol. 296, F892–F901 (2009).

    CAS  Article  Google Scholar 

  59. 59.

    Fronius, M. & Clauss, W. G. Mechano-sensitivity of ENaC: may the (shear) force be with you. Pflügers Arch. 455, 775–785 (2008).

    CAS  Article  Google Scholar 

  60. 60.

    Zhang, W. K. et al. Mechanosensitive gating of CFTR. Nat. Cell Biol. 12, 507–512 (2010).

    CAS  Article  Google Scholar 

  61. 61.

    Coste, B. et al. Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science 330, 55–60 (2010).

    CAS  Article  Google Scholar 

  62. 62.

    Storch, U., Mederos y Schnitzler, M. & Gudermann, T. G protein-mediated stretch reception. Am. J. Physiol. Heart Circ. Physiol. 302, H1241–H1249 (2012).

    CAS  Article  Google Scholar 

  63. 63.

    Seminario-Vidal, L. et al. Rho signaling regulates pannexin 1-mediated ATP release from airway epithelia. J. Biol. Chem. 286, 26277–26286 (2011).

    CAS  Article  Google Scholar 

  64. 64.

    Genetos, D. C., Geist, D. J., Liu, D., Donahue, H. J. & Duncan, R. L. Fluid shear‐induced ATP secretion mediates prostaglandin release in MC3T3‐E1 osteoblasts. J. Bone Miner. Res. 20, 41–49 (2005).

    CAS  Article  Google Scholar 

  65. 65.

    Chand, N. & Eyre, P. Atypical (relaxant) response to histamine in cat bronchus. Agents Actions. 7, 183–190 (1977).

    CAS  Article  Google Scholar 

  66. 66.

    Chand, N. & Eyre, P. Histamine relaxes constricted trachea and bronchi of horse. Vet. Res. Commun. 1, 85–90 (1977).

    CAS  Article  Google Scholar 

  67. 67.

    Chand, N. & DeRoth, L. Actions of histamine and other substances on the airway smooth muscle of swine (in vitro). Vet. Res. Commun. 2, 151–155 (1978).

    CAS  Article  Google Scholar 

  68. 68.

    Stickland, M. K., Rowe, B. H., Spooner, C. H., Vandermeer, B. & Dryden, D. M. Effect of warm-up exercise on exercise-induced bronchoconstriction. Med. Sci. Sports Exerc. 44, 383–391 (2012).

    Article  Google Scholar 

  69. 69.

    Szczeklik, A. & Stevenson, D. D. Aspirin-induced asthma: advances in pathogenesis, diagnosis, and management. J. Allergy Clin. Immunol. 111, 913–921 (2003).

    CAS  Article  Google Scholar 

  70. 70.

    Picado, C. Aspirin‐intolerant asthma: role of cyclo‐oxygenase enzymes. Allergy 57, 58–60 (2002).

    Article  Google Scholar 

  71. 71.

    Hanania, N. A., Dickey, B. F. & Bond, R. A. Clinical implications of the intrinsic efficacy of beta-adrenoceptor drugs in asthma: full, partial and inverse agonism. Curr. Opin. Pulm. Med. 16, 1–5 (2010).

  72. 72.

    Ruan, Y. C., Zhou, W. & Chan, H. C. Regulation of smooth muscle contraction by the epithelium: role of prostaglandins. Physiology 26, 156–170 (2011).

    CAS  Article  Google Scholar 

  73. 73.

    Bultitude, M., HILLs, N. & Shuttleworth, K. Clinical and experimental studies on the action of prostaglandins and their synthesis inhibitors on detrusor muscle in vitro and in vivo. Br. J. Urol. 48, 631–637 (1976).

    CAS  Article  Google Scholar 

  74. 74.

    Lundström, V., Gréen, K. & Svanborg, K. Endogenous prostaglandins in dysmenorrhea and the effect of prostaglandin synthetase inhibitors (PGSI) on uterine contractility. Acta Obstet. Gynecol. Scand. 58, 51–56 (1979).

    Article  Google Scholar 

  75. 75.

    Trepat, X. et al. Universal physical responses to stretch in the living cell. Nature 447, 592 (2007).

    CAS  Article  Google Scholar 

  76. 76.

    Panettieri, R., Murray, R., DePalo, L., Yadvish, P. & Kotlikoff, M. A human airway smooth muscle cell line that retains physiological responsiveness. Am. J. Physiol. Cell Physiol. 256, C329–C335 (1989).

    CAS  Article  Google Scholar 

  77. 77.

    Kilic, O. et al. Brain-on-a-chip model enables analysis of human neuronal differentiation and chemotaxis. Lab Chip 16, 4152–4162 (2016).

    CAS  Article  Google Scholar 

  78. 78.

    Fabry, B. et al. Scaling the microrheology of living cells. Phys. Rev. Lett. 87, 148102 (2001).

    CAS  Article  Google Scholar 

  79. 79.

    Benjamini Y. & Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Series B 57, 289–300 (1995).

  80. 80.

    Van Koppen, C. et al. Beta adrenoceptor binding and induced relaxation in airway smooth muscle from patients with chronic airflow obstruction. Thorax 44, 28–35 (1989).

    Article  Google Scholar 

  81. 81.

    Aizawa, H., Miyazaki, N., Shigematsu, N. & Tomooka, M. A possible role of airway epithelium in modulating hyperresponsiveness. Br. J. Pharmacol. 93, 139–145 (1988).

    CAS  Article  Google Scholar 

  82. 82.

    Healy, Z. R. et al. Divergent responses of chondrocytes and endothelial cells to shear stress: cross-talk among COX-2, the phase 2 response, and apoptosis. Proc. Natl Acad. Sci. USA 102, 14010–14015 (2005).

    CAS  Article  Google Scholar 

  83. 83.

    Kilic O. et al. Dataset for A microphysiological model of the bronchial airways reveals the interplay of mechanical and biochemical signals in bronchospasm. Figshare (2019).

Download references


This work was supported by National Institutes of Health grants U01 CA155758 (A.L), U54 CA209992 (A.L), R01 HL107361 (S.S.A) and P01 HL114471 (R.A.P., S.B.L. and S.S.A.). O.K. was a recipient of the American Heart Association Postdoctoral Fellowship (grant no. 13POST17140090). This work was also supported by a grant from the American Asthma Foundation (A.L. and S.S.A). S.S.A. was also supported by a Discovery Award and a Catalyst Award from the Johns Hopkins University.

Author information




O.K., S.S.A. and A.L. conceptualized the work. O.K. carried out the device and platform design and fabrication. O.K., H.M.Y., A.Y., S.R.S., A.R.-V. and H.C. carried out the experiments. O.K. and A.L. performed the theoretical modelling. All authors contributed to data analysis, discussion and interpretation. O.K., S.S.A. and A.L. wrote and revised the manuscript with input from all authors.

Corresponding authors

Correspondence to Onur Kilic or Steven S. An or Andre Levchenko.

Ethics declarations

Competing interests

O.K, S.S.A. and A.L. have a pending patent (US Patent Application 15/739,639) related to the work in this manuscript. The remaining authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary figures, tables and legend for Supplementary Video 1.

Reporting Summary

Supplementary Video 1

Tidal breathing in bronchial-chip

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kilic, O., Yoon, A., Shah, S.R. et al. A microphysiological model of the bronchial airways reveals the interplay of mechanical and biochemical signals in bronchospasm. Nat Biomed Eng 3, 532–544 (2019).

Download citation


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing