A bioprinted human-glioblastoma-on-a-chip for the identification of patient-specific responses to chemoradiotherapy

Abstract

Patient-specific ex vivo models of human tumours that recapitulate the pathological characteristics and complex ecology of native tumours could help determine the most appropriate cancer treatment for individual patients. Here, we show that bioprinted reconstituted glioblastoma tumours consisting of patient-derived tumour cells, vascular endothelial cells and decellularized extracellular matrix from brain tissue in a compartmentalized cancer–stroma concentric-ring structure that sustains a radial oxygen gradient, recapitulate the structural, biochemical and biophysical properties of the native tumours. We also show that the glioblastoma-on-a-chip reproduces clinically observed patient-specific resistances to treatment with concurrent chemoradiation and temozolomide, and that the model can be used to determine drug combinations associated with superior tumour killing. The patient-specific tumour-on-a-chip model might be useful for the identification of effective treatments for glioblastoma patients resistant to the standard first-line treatment.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Schematic illustration of the bioprinting and use of the patient-specific GBM-on-a-chip for the identification of an optimal drug combination for the patient.
Fig. 2: Preparation and evaluation of the BdECM bioink.
Fig. 3: Working principles of the GBM-on-a-chip and confirmation of reconstituted GBM ecology.
Fig. 4: The synergistic effect of biochemical and biophysical heterogeneities on the pathological progression of GBM-on-a-chip.
Fig. 5: Reproduction of differences in treatment resistance in patient-specific GBMs-on-chips.
Fig. 6: Evaluation of the susceptibility of an individual patient to CCRT with different drug combinations.

Code availability

The computer code for the bioprinting of the GBM-on-a-chip is provided as Supplementary Information.

Data availability

The authors declare that all data supporting the results in this study are available within the paper and its Supplementary information. The source data for the figures in this study are available from figshare (identifier https://doi.org/10.6084/m9.figshare.7392677)51.

References

  1. 1.

    Schreiber, S. L. et al. Towards patient-based cancer therapeutics. Nat. Biotechnol. 28, 904–906 (2010).

    CAS  Article  Google Scholar 

  2. 2.

    Al-Lazikani, B., Banerji, U. & Workman, P. Combinatorial drug therapy for cancer in the post-genomic era. Nat. Biotechnol. 30, 679–692 (2012).

    CAS  Article  Google Scholar 

  3. 3.

    Creixell, P., Schoof, E. M., Erler, J. T. & Linding, R. Navigating cancer network attractors for tumor-specific therapy. Nat. Biotechnol. 30, 842–848 (2012).

    CAS  Article  Google Scholar 

  4. 4.

    Aparicio, S., Hidalgo, M. & Kung, A. L. Examining the utility of patient-derived xenograft mouse models. Nat. Rev. Cancer 15, 311–316 (2015).

    CAS  Article  Google Scholar 

  5. 5.

    Eirew, P. et al. Dynamics of genomic clones in breast cancer patient xenografts at single-cell resolution. Nature 518, 422–426 (2015).

    CAS  Article  Google Scholar 

  6. 6.

    Byrne, A. T. et al. Interrogating open issues in cancer precision medicine with patient-derived xenografts. Nat. Rev. Cancer 17, 254–268 (2017).

    CAS  Article  Google Scholar 

  7. 7.

    Crystal, A. S. et al. Patient-derived models of acquired resistance can identify effective drug combinations for cancer. Science 346, 1480–1486 (2014).

    CAS  Article  Google Scholar 

  8. 8.

    Gao, D. et al. Organoid cultures derived from patients with advanced prostate cancer. Cell 159, 176–187 (2014).

    CAS  Article  Google Scholar 

  9. 9.

    Hanahan, D. & Coussens, L. M. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 21, 309–322 (2012).

    CAS  Article  Google Scholar 

  10. 10.

    Sackmann, E. K., Fulton, A. L. & Beebe, D. J. The present and future role of microfluidics in biomedical research. Nature 507, 181–189 (2014).

    CAS  Article  Google Scholar 

  11. 11.

    Picollet-D’hahan, N. et al. A 3D toolbox to enhance physiological relevance of human tissue models. Trends Biotechnol. 34, 757–769 (2016).

    Article  Google Scholar 

  12. 12.

    Garber, K. Between disease and a dish. Nat. Biotechnol. 32, 712–715 (2014).

    CAS  Article  Google Scholar 

  13. 13.

    Yamada, K. M. & Cukierman, E. Modeling tissue morphogenesis and cancer in 3D. Cell 130, 601–610 (2007).

    CAS  Article  Google Scholar 

  14. 14.

    Lathia, J. D., Heddleston, J. M., Venere, M. & Rich, J. N. Deadly teamwork: neural cancer stem cells and the tumor microenvironment. Cell Stem Cell 8, 482–485 (2011).

  15. 15.

    Junttila, M. R. & de Sauvage, F. J. Influence of tumour micro-environment heterogeneity on therapeutic response. Nature 501, 346–354 (2013).

    CAS  Article  Google Scholar 

  16. 16.

    Korolev, K. S., Xavier, J. B. & Gore, J. Turning ecology and evolution against cancer. Nat. Rev. Cancer 14, 371–380 (2014).

    CAS  Article  Google Scholar 

  17. 17.

    Ananthanarayanan, B., Kim, Y. & Kumar, S. Elucidating the mechanobiology of malignant brain tumors using a brain matrix-mimetic hyaluronic acid hydrogel platform. Biomaterials 32, 7913–7923 (2011).

    CAS  Article  Google Scholar 

  18. 18.

    Kievit, F. M. et al. Chitosan–alginate 3D scaffolds as a mimic of the glioma tumor microenvironment. Biomaterials 31, 5903–5910 (2010).

    CAS  Article  Google Scholar 

  19. 19.

    Lee, G. Y., Kenny, P. A., Lee, E. H. & Bissell, M. J. Three-dimensional culture models of normal and malignant breast epithelial cells. Nat. Methods 4, 359–365 (2007).

    CAS  Article  Google Scholar 

  20. 20.

    Pedron, S., Becka, E. & Harley, B. A. Spatially gradated hydrogel platform as a 3D engineered tumor microenvironment. Adv. Mater. 27, 1567–1572 (2015).

    CAS  Article  Google Scholar 

  21. 21.

    Bhatia, S. N. & Ingber, D. E. Microfluidic organs-on-chips. Nat. Biotechnol. 32, 760–772 (2014).

    CAS  Article  Google Scholar 

  22. 22.

    Shin, Y. et al. Microfluidic assay for simultaneous culture of multiple cell types on surfaces or within hydrogels. Nat. Protoc. 7, 1247–1259 (2012).

    CAS  Article  Google Scholar 

  23. 23.

    Ostrom, Q. T. et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2009–2013. Neuro Oncol. 18, v1–v75 (2016).

    Article  Google Scholar 

  24. 24.

    Ott, H. C. et al. Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nat. Med. 14, 213–221 (2008).

    CAS  Article  Google Scholar 

  25. 25.

    Chen, H. J. et al. A recellularized human colon model identifies cancer driver genes. Nat. Biotechnol. 34, 845–851 (2016).

    Article  Google Scholar 

  26. 26.

    Dunne, L. W. et al. Human decellularized adipose tissue scaffold as a model for breast cancer cell growth and drug treatments. Biomaterials 35, 4940–4949 (2014).

    CAS  Article  Google Scholar 

  27. 27.

    Pati, F. et al. Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nat. Commun. 5, 3935 (2014).

    CAS  Article  Google Scholar 

  28. 28.

    Choi, Y.-J. et al. 3D cell printing of functional skeletal muscle constructs using skeletal muscle-derived bioink. Adv. Healthc. Mater. 5, 2636–2645 (2016).

    CAS  Article  Google Scholar 

  29. 29.

    Le, P. U. et al. DRR drives brain cancer invasion by regulating cytoskeletal-focal adhesion dynamics. Oncogene 29, 4636–4647 (2010).

    CAS  Article  Google Scholar 

  30. 30.

    Jung, J. W., Lee, J.-S. & Cho, D.-W. Computer-aided multiple-head 3D printing system for printing of heterogeneous organ/tissue constructs. Sci. Rep. 6, 21685 (2016).

    CAS  Article  Google Scholar 

  31. 31.

    Kim, D. et al. SHMT2 drives glioma cell survival in ischaemia but imposes a dependence on glycine clearance. Nature 520, 363–367 (2015).

    CAS  Article  Google Scholar 

  32. 32.

    Jain, R. K. et al. Angiogenesis in brain tumours. Nat. Rev. Neurosci. 8, 610–622 (2007).

    CAS  Article  Google Scholar 

  33. 33.

    Brandes, A. A. et al. First-line chemotherapy with cisplatin plus fractionated temozolomide in recurrent glioblastoma multiforme: a phase II study of the Gruppo Italiano Cooperativo di Neuro-oncologia. J. Clin. Oncol. 22, 1598–1604 (2004).

    CAS  Article  Google Scholar 

  34. 34.

    Bao, Q. et al. Recombinant TIMP-1-GPI inhibits growth of fibrosarcoma and enhances tumor sensitivity to doxorubicin. Target. Oncol. 9, 251–261 (2014).

    CAS  Article  Google Scholar 

  35. 35.

    McFaline-Figueroa, J. L. et al. Minor changes in expression of the mismatch repair protein MSH2 exert a major impact on glioblastoma response to temozolomide. Cancer Res. 75, 3127–3138 (2015).

    CAS  Article  Google Scholar 

  36. 36.

    Munoz, J. L. et al. Temozolomide resistance in glioblastoma cells occurs partly through epidermal growth factor receptor-mediated induction of connexin 43. Cell Death Dis. 5, e1145 (2014).

    CAS  Article  Google Scholar 

  37. 37.

    Perazzoli, G. et al. Temozolomide resistance in glioblastoma cell lines: implication of MGMT, MMR, P-glycoprotein and CD133 expression. PLoS ONE 10, e0140131 (2015).

    Article  Google Scholar 

  38. 38.

    Hirose, Y., Berger, M. S. & Pieper, R. O. Abrogation of the Chk1-mediated G2 checkpoint pathway potentiates temozolomide-induced toxicity in a p53-independent manner in human glioblastoma cells. Cancer Res. 61, 5843–5849 (2001).

    CAS  PubMed  Google Scholar 

  39. 39.

    Vecchio, D. et al. Predictability, efficacy and safety of radiosensitization of glioblastoma-initiating cells by the ATM inhibitor KU-60019. Int. J. Cancer 135, 479–491 (2014).

    CAS  Article  Google Scholar 

  40. 40.

    Hegi, M. E. et al. Clinical trial substantiates the predictive value of O-6-methylguanine-DNA methyltransferase promoter methylation in glioblastoma patients treated with temozolomide. Clin. Cancer Res. 10, 1871–1874 (2004).

    CAS  Article  Google Scholar 

  41. 41.

    Eads, J. R. et al. Phase I clinical trial of temozolomide and methoxyamine (TRC-102) in patients with advanced solid tumors. J. Clin. Oncol. 33, 2558–2558 (2015).

    Article  Google Scholar 

  42. 42.

    Xu, Z. et al. Application of a microfluidic chip-based 3D co-culture to test drug sensitivity for individualized treatment of lung cancer. Biomaterials 34, 4109–4117 (2013).

    CAS  Article  Google Scholar 

  43. 43.

    Yu, M. et al. Ex vivo culture of circulating breast tumor cells for individualized testing of drug susceptibility. Science 345, 216–220 (2014).

    CAS  Article  Google Scholar 

  44. 44.

    Choi, Y.-J., Yi, H.-G., Kim, S.-W. & Cho, D.-W. 3D cell printed tissue analogues: a new platform for theranostics. Theranostics 7, 3118–3137 (2017).

    CAS  Article  Google Scholar 

  45. 45.

    Lind, J. U. et al. Instrumented cardiac microphysiological devices via multimaterial three-dimensional printing. Nat. Mater. 16, 303–308 (2016).

    Article  Google Scholar 

  46. 46.

    Lee, H. & Cho, D.-W. One-step fabrication of an organ-on-a-chip with spatial heterogeneity using a 3D bioprinting technology. Lab Chip 16, 2618–2625 (2016).

    CAS  Article  Google Scholar 

  47. 47.

    Kang, T.-Y., Hong, J. M., Jung, J. W., Yoo, J. J. & Cho, D.-W. Design and assessment of a microfluidic network system for oxygen transport in engineered tissue. Langmuir 29, 701–709 (2013).

    CAS  Article  Google Scholar 

  48. 48.

    Jung, J. W. et al. Evaluation of the effective diffusivity of a freeform fabricated scaffold using computational simulation. J. Biomech. Eng. 135, 084501 (2013).

    Article  Google Scholar 

  49. 49.

    Kim, J. Y. & Cho, D.-W. Blended PCL/PLGA scaffold fabrication using multi-head deposition system. Microelectron. Eng. 86, 1447–1450 (2009).

    CAS  Article  Google Scholar 

  50. 50.

    Jo, H. Y. et al. The unreliability of MTT assay in the cytotoxic test of primary cultured glioblastoma cells. Exp. Neurobiol. 24, 235–245 (2015).

    Article  Google Scholar 

  51. 51.

    Yi, H.-G. et al. A bioprinted human-glioblastoma-on-a-chip reproduces patient-specific responses to chemoradiotherapy. Figshare https://doi.org/10.6084/m9.figshare.7392677 (2018).

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) funded by the Korean government, MSIP (grant nos 2010-0018294, 2015R1A2A2A01005515 and 2018R1A2B2009540). This study was partly supported by the Technology Innovation Program (grant no. 10050154, Business Model Development for Personalized Medicine Based on Integrated Genome and Clinical Information) and by the Bio and Medical Technology Development Program of the NRF funded by the Korean government, MSIP (grant no. 2015M3C7A1028926). We thank J. M. Hong for technical assistance and M. N. Park for helpful discussions.

Author information

Affiliations

Authors

Contributions

H.-G.Y., D.-W.C. and S.H.Paek conceived the concept of applying 3D-printing technology to establish the patient-specific GBM-on-a-chip. H.-G.Y. and Y.H.J. devised the working principles of the chip in detail. H.-G.Y. designed and performed most of the experiments. Y.K. performed the bioinformatics analyses and wrote the relevant results and methods. Y.-J.C. assisted with the characterization of the BdECM bioink, 3D printing of the GBMs-on-chips and performed the tumour spheroid invasion study. H.E.M. prepared for the IRB approval process to conduct the experiments using patient-derived GBM cells and organized the clinical information of the patients. S.H.Paek was the physician in charge of the GBM patients. S.H.Park performed the pathological detection and analysis of the patient-derived GBMs. K.S.K. contributed to the discussion for the initial stages of this work. M.B. assisted with the 3D printing and culturing of the GBMs-on-chips. J.J. contributed to the discussion for the revisions of the manuscript. H.Y. provided the genetic analysis data of patient-derived GBM cells. H.-G.Y., Y.H.J., S.H.Paek and D.-W.C. analysed the data. S.H.Paek also analysed the clinical observations and provided the relevant consultation. D.-W.C. provided overall guidance and supervised the project. H.-G.Y. and Y.H.J. wrote and edited the manuscript.

Corresponding authors

Correspondence to Sun Ha Paek or Dong-Woo Cho.

Ethics declarations

Competing interests

Patents on the use of BdECM bioink in modelling cancer (patent no. 10-1860798, Korea) and on 3D printing of GBM-on-a-chip (patent no. 10-1803618, Korea) have been registered.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary figures, tables, methods and code.

Reporting Summary

Supplementary Video 1

Cell-printing of a glioblastoma-on-a-chip.

Supplementary Video 2

Migration of glioblastoma cells to the surrounding matrix.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yi, H., Jeong, Y.H., Kim, Y. et al. A bioprinted human-glioblastoma-on-a-chip for the identification of patient-specific responses to chemoradiotherapy. Nat Biomed Eng 3, 509–519 (2019). https://doi.org/10.1038/s41551-019-0363-x

Download citation

Further reading