Depletion of PD-1-positive cells ameliorates autoimmune disease

Abstract

Targeted suppression of autoimmune diseases without collateral suppression of normal immunity remains an elusive yet clinically important goal. Targeted blockade of programmed-cell-death-protein-1 (PD-1)—an immune checkpoint factor expressed by activated T cells and B cells—is an efficacious therapy for potentiating immune activation against tumours. Here we show that an immunotoxin consisting of an anti-PD-1 single-chain variable fragment, an albumin-binding domain and Pseudomonas exotoxin targeting PD-1-expressing cells, selectively recognizes and induces the killing of the cells. Administration of the immunotoxin to mouse models of autoimmune diabetes delays disease onset, and its administration in mice paralysed by experimental autoimmune encephalomyelitis ameliorates symptoms. In all mouse models, the immunotoxin reduced the numbers of PD-1-expressing cells, of total T cells and of cells of an autoreactive T-cell clone found in inflamed organs, while maintaining active adaptive immunity, as evidenced by full-strength immune responses to vaccinations. The targeted depletion of PD-1-expressing cells contingent to the preservation of adaptive immunity might be effective in the treatment of a wide range of autoimmune diseases.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: αPD-1–ABD–PE specifically binds to and enters PD-1+ lymphocytes.
Fig. 2: αPD-1–ABD–PE is selectively toxic to PD-1+ cells in vitro and in vivo.
Fig. 3: αPD-1–ABD–PE binds to albumin and has enhanced plasma exposure.
Fig. 4: Administration of αPD-1–ABD–PE delays the onset of T1D.
Fig. 5: Administration of αPD-1–ABD–PE ameliorates symptoms in mice with clinical EAE.
Fig. 6: Administration of αPD-1–ABD–PE does not affect normal adaptive immune responses.

Data availability

The authors declare that all other data supporting the findings of this study are available within the paper and its Supplementary Information. Source data for the figures and encoding genes are available at figshare (https://figshare.com/s/f14f13bf582ce99165a1)63.

References

  1. 1.

    Bluestone, J. A., Herold, K. & Eisenbarth, G. Genetics, pathogenesis and clinical interventions in type 1 diabetes. Nature 464, 1293–1300 (2010).

    CAS  Article  Google Scholar 

  2. 2.

    Atkinson, M. A., Eisenbarth, G. S. & Michels, A. W. Type 1 diabetes. Lancet 383, 69–82 (2014).

    Article  Google Scholar 

  3. 3.

    Laurence, A. & Aringer, M. in The Autoimmune Diseases 5th edn (eds Mackay, I. & Rose, N. R.) 311–318 (Elsevier, San Diego, 2014).

  4. 4.

    van Belle, T. L., Coppieters, K. T. & von Herrath, M. G. Type 1 diabetes: etiology, immunology, and therapeutic strategies. Physiol. Rev. 91, 79–118 (2011).

    Article  Google Scholar 

  5. 5.

    Farber, R., Harel, A. & Lublin, F. Novel agents for relapsing forms of multiple sclerosis. Ann. Rev. Med. 67, 309–321 (2016).

    Article  Google Scholar 

  6. 6.

    Wingerchuk, D. M. & Carter, J. L. Multiple sclerosis: current and emerging disease-modifying therapies and treatment strategies. Mayo Clin. Proc. 89, 225–240 (2014).

    Article  Google Scholar 

  7. 7.

    Kim, S. S., Kirou, K. A. & Erkan, D. Belimumab in systemic lupus erythematosus: an update for clinicians. Ther. Adv. Chronic Dis. 3, 11–23 (2012).

    CAS  Article  Google Scholar 

  8. 8.

    Chatenoud, L. in The Autoimmune Diseases 5th edn (eds Mackay, I. & Rose, N. R.) 1121–1145 (Elesvier, San Diego, 2014).

  9. 9.

    Elsegeiny, W., Eddens, T., Chen, K. & Kolls, J. K. Anti-CD20 antibody therapy and susceptibility to Pneumocystis pneumonia. Infect. Immun. 83, 2043–2052 (2015).

    CAS  Article  Google Scholar 

  10. 10.

    Sanofi. Lemtrada (alemtuzumab): Highlights of prescribing information. (FDA, 2019); http://products.sanofi.us/lemtrada/lemtrada.html.

  11. 11.

    Torkildsen, Ø., Myhr, K. M. & Bø, L. Disease-modifying treatments for multiple sclerosis—a review of approved medications. Eur. J. Neurol. 23, 18–27 (2016).

    Article  Google Scholar 

  12. 12.

    McNamara, C., Sugrue, B. & MacMahon, P. J. Current and emerging therapies in multiple sclerosis: implications for the radiologist, part 2—surveillance for treatment complications and disease progression. Am. J. Neuroradiol. 38, 1672–1680 (2017).

    CAS  Article  Google Scholar 

  13. 13.

    Francisco, L. M., Sage, P. T. & Sharpe, A. H. The PD-1 pathway in tolerance and autoimmunity. Immunol. Rev. 236, 219–242 (2010).

    CAS  Article  Google Scholar 

  14. 14.

    Agata, Y. et al. Expression of the PD-1 antigen on the surface of stimulated mouse T and B lymphocytes. Int. Immunol. 8, 765–772 (1996).

    CAS  Article  Google Scholar 

  15. 15.

    Yamazaki, T. et al. Expression of programmed death 1 ligands by murine T cells and APC. J. Immunol. 169, 5538–5545 (2002).

    CAS  Article  Google Scholar 

  16. 16.

    Joller, N., Peters, A., Anderson, A. C. & Kuchroo, V. K. Immune checkpoints in central nervous system autoimmunity. Immunol. Rev. 248, 122–139 (2012).

    Article  Google Scholar 

  17. 17.

    Liang, S. C. et al. Regulation of PD-1, PD-L1, and PD-L2 expression during normal and autoimmune responses. Eur. J. Immunol. 33, 2706–2716 (2003).

    CAS  Article  Google Scholar 

  18. 18.

    Zhu, B. et al. Differential role of programmed death-ligand 1 and programmed death-ligand 2 in regulating the susceptibility and chronic progression of experimental autoimmune encephalomyelitis. J. Immunol. 176, 3480–3489 (2006).

    CAS  Article  Google Scholar 

  19. 19.

    Salama, A. D. et al. Critical role of the programmed death-1 (PD-1) pathway in regulation of experimental autoimmune encephalomyelitis. J. Exp. Med. 198, 71–78 (2003).

    CAS  Article  Google Scholar 

  20. 20.

    Latchman, Y. E. et al. PD-L1-deficient mice show that PD-L1 on T cells, antigen-presenting cells, and host tissues negatively regulates T cells. Proc. Natl Acad. Sci. USA 101, 10691–10696 (2004).

    CAS  Article  Google Scholar 

  21. 21.

    Okazaki, T., Chikuma, S., Iwai, Y., Fagarasan, S. & Honjo, T. A rheostat for immune responses: the unique properties of PD-1 and their advantages for clinical application. Nat. Immunol. 14, 1212–1218 (2013).

    CAS  Article  Google Scholar 

  22. 22.

    Keir, M. E., Butte, M. J., Freeman, G. J. & Sharpe, A. H. PD-1 and its ligands in tolerance and immunity. Annu. Rev. Immunol. 26, 677–704 (2008).

    CAS  Article  Google Scholar 

  23. 23.

    Fife, B. T. et al. Interactions between PD-1 and PD-L1 promote tolerance by blocking the TCR-induced stop signal. Nat. Immunol. 10, 1185–1192 (2009).

    CAS  Article  Google Scholar 

  24. 24.

    Godwin, J. L. et al. Nivolumab-induced autoimmune diabetes mellitus presenting as diabetic ketoacidosis in a patient with metastatic lung cancer. J. Immunother. Cancer 5, 40 (2017).

    Article  Google Scholar 

  25. 25.

    Ansari, M. J. et al. The programmed death-1 (PD-1) pathway regulates autoimmune diabetes in nonobese diabetic (NOD) mice. J. Exp. Med. 198, 63–69 (2003).

    CAS  Article  Google Scholar 

  26. 26.

    Hughes, J. et al. Precipitation of autoimmune diabetes with anti-PD-1 immunotherapy. Diabetes Care 38, e55–e57 (2015).

    CAS  Article  Google Scholar 

  27. 27.

    Zhao, P. et al. An anti-programmed death-1 antibody (αPD-1) fusion protein that self-assembles into a multivalent and functional αPD-1 nanoparticle. Mol. Pharm. 14, 1494–1500 (2017).

    CAS  Article  Google Scholar 

  28. 28.

    Levy, O. E. et al. Novel exenatide analogs with peptidic albumin binding domains: potent anti-diabetic agents with extended duration of action. PLoS ONE 9, e87704 (2014).

    Article  Google Scholar 

  29. 29.

    Wang, P. et al. An albumin binding polypeptide both targets cytotoxic T lymphocyte vaccines to lymph nodes and boosts vaccine presentation by dendritic cells. Theranostics 8, 223–236 (2018).

    CAS  Article  Google Scholar 

  30. 30.

    Weldon, J. E. et al. A recombinant immunotoxin against the tumor-associated antigen mesothelin reengineered for high activity, low off-target toxicity, and reduced antigenicity. Mol. Cancer Ther. 12, 48–57 (2013).

    CAS  Article  Google Scholar 

  31. 31.

    Onda, M. et al. Recombinant immunotoxin against B-cell malignancies with no immunogenicity in mice by removal of B-cell epitopes. Proc. Natl Acad. Sci. USA 108, 5742–5747 (2011).

    CAS  Article  Google Scholar 

  32. 32.

    Chen, H. et al. Chemical conjugation of evans blue derivative: a strategy to develop long-acting therapeutics through albumin binding. Theranostics 6, 243–253 (2016).

    Article  Google Scholar 

  33. 33.

    Hassan, R., Alewine, C. & Pastan, I. New life for immunotoxin cancer therapy. Clin. Cancer Res. 22, 1055–1058 (2016).

    CAS  Article  Google Scholar 

  34. 34.

    Jonsson, A., Dogan, J., Herne, N., Abrahmsen, L. & Nygren, P. A. Engineering of a femtomolar affinity binding protein to human serum albumin. Protein Eng. Des. Sel. 21, 515–527 (2008).

    CAS  Article  Google Scholar 

  35. 35.

    Yamazaki, T. et al. Blockade of B7-H1 on macrophages suppresses CD4+ T cell proliferation by augmenting IFN-γ-induced nitric oxide production. J. Immunol. 175, 1586–1592 (2005).

    CAS  Article  Google Scholar 

  36. 36.

    Brinkmann, U. in Antibody Engineering (eds Kontermann, R. & Dübel, S.) 181–189 (Springer, Berlin, 2010).

  37. 37.

    Hirano, F. et al. Blockade of B7-H1 and PD-1 by monoclonal antibodies potentiates cancer therapeutic immunity. Cancer Res. 65, 1089–1096 (2005).

    CAS  PubMed  Google Scholar 

  38. 38.

    Bera, T. K., Onda, M., Kreitman, R. J. & Pastan, I. An improved recombinant Fab-immunotoxin targeting CD22 expressing malignancies. Leuk. Res. 38, 1224–1229 (2014).

    CAS  Article  Google Scholar 

  39. 39.

    Fife, B. T. et al. Insulin-induced remission in new-onset NOD mice is maintained by the PD-1–PD-L1 pathway. J. Exp. Med. 203, 2737–2747 (2006).

    CAS  Article  Google Scholar 

  40. 40.

    Brode, S., Raine, T., Zaccone, P. & Cooke, A. Cyclophosphamide-induced type-1 diabetes in the NOD mouse is associated with a reduction of CD4+CD25+Foxp3+ regulatory T cells. J. Immunol. 177, 6603–6612 (2006).

    CAS  Article  Google Scholar 

  41. 41.

    Wang, J. et al. Establishment of NOD-Pdcd1 −/− mice as an efficient animal model of type I diabetes. Proc. Natl Acad. Sci. USA 102, 11823–11828 (2005).

    CAS  Article  Google Scholar 

  42. 42.

    Wang, Y. et al. Neuropilin-1 modulates interferon-γ-stimulated signaling in brain microvascular endothelial cells. J. Cell Sci. 129, 3911–3921 (2016).

    CAS  Article  Google Scholar 

  43. 43.

    Rangachari, M. & Kuchroo, V. K. Using EAE to better understand principles of immune function and autoimmune pathology. J. Autoimmun. 45, 31–39 (2013).

    CAS  Article  Google Scholar 

  44. 44.

    Schreiner, B., Bailey, S. L., Shin, T., Chen, L. & Miller, S. D. PD-1 ligands expressed on myeloid-derived APC in the CNS regulate T-cell responses in EAE. Eur. J. Immunol. 38, 2706–2717 (2008).

    CAS  Article  Google Scholar 

  45. 45.

    Massilamany, C., Upadhyaya, B., Gangaplara, A., Kuszynski, C. & Reddy, J. Detection of autoreactive CD4 T cells using major histocompatibility complex class II dextramers. BMC. Immunol. 12, 40 (2011).

    CAS  Article  Google Scholar 

  46. 46.

    Turner, M. J. et al. Immune status following alemtuzumab treatment in human CD52 transgenic mice. J. Neuroimmunol. 261, 29–36 (2013).

    CAS  Article  Google Scholar 

  47. 47.

    Sharon, R., McMaster, P. R., Kask, A. M., Owens, J. D. & Paul, W. E. DNP-Lys-Ficoll: a T-independent antigen which elicits both IgM and IgG anti-DNP antibody-secreting cells. J. Immunol. 114, 1585–1589 (1975).

    CAS  PubMed  Google Scholar 

  48. 48.

    Zhang, Q. & Vignali, D. A. Co-stimulatory and co-inhibitory pathways in autoimmunity. Immunity 44, 1034–1051 (2016).

    CAS  Article  Google Scholar 

  49. 49.

    Sharpe, A. H. & Pauken, K. E. The diverse functions of the PD1 inhibitory pathway. Nat. Rev. Immunol. 18, 153–167 (2018).

    CAS  Article  Google Scholar 

  50. 50.

    Davidson, A. & Diamond, B. in The Autoimmune Diseases 5th edn (eds Mackay, I. & Rose, N. R.) 19–37 (Elsevier, San Diego, 2014).

  51. 51.

    Kasagi, S. et al. In vivo-generated antigen-specific regulatory T cells treat autoimmunity without compromising antibacterial immune response. Sci. Transl. Med. 6, 241ra278 (2014).

    Article  Google Scholar 

  52. 52.

    Dong, S., Xu, T., Wang, P., Zhao, P. & Chen, M. Engineering of a self-adjuvanted iTEP-delivered CTL vaccine. Acta Pharmacol. Sin. 38, 914–923 (2017).

    CAS  Article  Google Scholar 

  53. 53.

    Dong, S., Xu, T., Zhao, P., Parent, K. N. & Chen, M. A comparison study of iTEP nanoparticle-based CTL vaccine carriers revealed a surprise relationship between the stability and efficiency of the carriers. Theranostics 6, 666–678 (2016).

    CAS  Article  Google Scholar 

  54. 54.

    Zimmerman, T. et al. Simultaneous metal chelate affinity purification and endotoxin clearance of recombinant antibody fragments. J. Immunol. Methods 314, 67–73 (2006).

    CAS  Article  Google Scholar 

  55. 55.

    Hunter, S. A. & Cochran, J. R. Cell-binding assays for determining the affinity of protein–protein interactions: technologies and considerations. Methods Enzymol. 580, 21–44 (2016).

    CAS  Article  Google Scholar 

  56. 56.

    Shalem, O. et al. Genome-scale CRISPR–Cas9 knockout screening in human cells. Science 343, 84–87 (2014).

    CAS  Article  Google Scholar 

  57. 57.

    Pear, W. S., Nolan, G. P., Scott, M. L. & Baltimore, D. Production of high-titer helper-free retroviruses by transient transfection. Proc. Natl Acad. Sci. USA 90, 8392–8396 (1993).

    CAS  Article  Google Scholar 

  58. 58.

    Zhang, Y., Huo, M., Zhou, J. & Xie, S. PKSolver: An add-in program for pharmacokinetic and pharmacodynamic data analysis in Microsoft Excel. Comput. Methods Programs Biomed. 99, 306–314 (2010).

    Article  Google Scholar 

  59. 59.

    Gregori, S., Giarratana, N., Smiroldo, S. & Adorini, L. Dynamics of pathogenic and suppressor T cells in autoimmune diabetes development. J. Immunol. 171, 4040–4047 (2003).

    CAS  Article  Google Scholar 

  60. 60.

    Chitnis, T. et al. Effect of targeted disruption of STAT4 and STAT6 on the induction of experimental autoimmune encephalomyelitis. J. Clin. Invest. 108, 739–747 (2001).

    CAS  Article  Google Scholar 

  61. 61.

    McMahon, E. J., Bailey, S. L., Castenada, C. V., Waldner, H. & Miller, S. D. Epitope spreading initiates in the CNS in two mouse models of multiple sclerosis. Nat. Med. 11, 335–339 (2005).

    CAS  Article  Google Scholar 

  62. 62.

    Pino, P. A. & Cardona, A. E. Isolation of brain and spinal cord mononuclear cells using percoll gradients. J. Vis. Exp. 2, e2348 (2011).

    Google Scholar 

  63. 63.

    Zhao, P. et al. Depletion of PD-1-positive cells ameliorates autoimmune disease. Figshare https://figshare.com/s/f14f13bf582ce99165a1 (2019).

Download references

Acknowledgements

We thank X. Wang and H. Dai for their assistance in breeding mice. The flow cytometry work was conducted in the Flow Cytometry Core Facility of University of Utah. We thank Y. Zhang and J. Wang for their review and comments on the statistical analysis of this study and S. Owen and A. Dixon for their technical assistance with antibody-related protein engineering. S.J.F. was supported by grants NS070235 and JDRF 2-SRA-2014–270-M-R. R.S.F. was supported by grants R01NS065714, R01NS082102 and R01NS091939. S.G.Z. was supported by grants R01AR059103 and R61AR073409, and the NIH Star Award. P.Z. was supported by a Graduate Research Fellowship from the University of Utah. This work was primarily supported by the University of Utah Start-up Fund, a Huntsman Cancer Institute Pilot Grant (Grant number 170301), and party by a NIH grant (R21EB024083) to M.C.

Author information

Affiliations

Authors

Contributions

P.Z. and M.C. wrote the manuscript with significant suggestions from S.G.Z. and S.J.F. R.S.F., P.Z. and M.C. designed all experiments and analysed all experimental data. S.J.F. and X.H. contributed to the design of the T1D studies; R.S.F. contributed to the design of the EAE studies; Z.Z. generated PD-1 EL4 cells; Y.C. assisted with pharmacokinetics analysis. P.Z. designed and prepared immunotoxin with assistance from S.D. P.Z. characterized immunotoxin in vitro and in vivo. P.W. contributed to the design of ABD and the related studies. H.Y. provided the αPD-1 hybridoma and guidance on PD-1 biology. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Mingnan Chen.

Ethics declarations

Competing interests

M.C., P.Z. and P.W. have a pending patent application related to this work.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhao, P., Wang, P., Dong, S. et al. Depletion of PD-1-positive cells ameliorates autoimmune disease. Nat Biomed Eng 3, 292–305 (2019). https://doi.org/10.1038/s41551-019-0360-0

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing