Large-area MRI-compatible epidermal electronic interfaces for prosthetic control and cognitive monitoring

A Publisher Correction to this article was published on 04 April 2019

A Publisher Correction to this article was published on 14 March 2019

This article has been updated


Skin-interfaced medical devices are critically important for diagnosing disease, monitoring physiological health and establishing control interfaces with prosthetics, computer systems and wearable robotic devices. Skin-like epidermal electronic technologies can support these use cases in soft and ultrathin materials that conformally interface with the skin in a manner that is mechanically and thermally imperceptible. Nevertheless, schemes so far have limited the overall sizes of these devices to less than a few square centimetres. Here, we present materials, device structures, handling and mounting methods, and manufacturing approaches that enable epidermal electronic interfaces that are orders of magnitude larger than previously realized. As a proof-of-concept, we demonstrate devices for electrophysiological recordings that enable coverage of the full scalp and the full circumference of the forearm. Filamentary conductive architectures in open-network designs minimize radio frequency-induced eddy currents, forming the basis for structural and functional compatibility with magnetic resonance imaging. We demonstrate the use of the large-area interfaces for the multifunctional control of a transhumeral prosthesis by patients who have undergone targeted muscle-reinnervation surgery, in long-term electroencephalography, and in simultaneous electroencephalography and structural and functional magnetic resonance imaging.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Large-area epidermal electrodes for electrophysiological mapping and prosthetic control.
Fig. 2: Large-area epidermal electrodes for multichannel EMG and prosthetic control.
Fig. 3: Large-area epidermal electrodes for multichannel EEG.
Fig. 4: EEG/ECG performed inside an MRI scanner.
Fig. 5: Correlation of EMG and functional MRI.

Code availability

EEGLAB is freely available ( under the GNU public license for non-commercial use and open source development, together with sample data, a user’s tutorial and extensive documentation. In-house MATLAB tools were adapted from the software tools developed at Duke University ( and are available on request.

Data availability

The authors declare that all data supporting the findings of this study are available within the paper and its Supplementary Information.

Change history

  • 04 April 2019

    In Fig. 4c of this Article, the scale bar units were incorrectly stated as ‘μV’; the correct units are ‘mV’. The figure has now been amended accordingly.

  • 14 March 2019

    In Fig. 4c of this Article originally published, the bottom y axis was incorrectly labelled as ‘MRI–ECG (μV)’; the correct label is ‘MRI/ECG’. In addition, in Fig. 4d, the bottom y axis was incorrectly labelled as ‘ECG (μV)’; the correct label is ‘ECG (mV)’. The scale bar units were also incorrectly stated as ‘mV’, the correct units are ‘μV’. The figure has now been amended accordingly.


  1. 1.

    Heikenfeld, J. et al. Wearable sensors: modalities, challenges, and prospects. Lab Chip 18, 217–248 (2018).

    CAS  Article  Google Scholar 

  2. 2.

    Rogers, J. A., Someya, T. & Huang, Y. Materials and mechanics for stretchable electronics. Science 327, 1603–1607 (2010).

    CAS  Article  Google Scholar 

  3. 3.

    Liu, Y., Pharr, M. & Salvatore, G. A. Lab-on-Skin: a review of flexible and stretchable electronics for wearable health monitoring. ACS Nano 11, 9614–9635 (2017).

    CAS  Article  Google Scholar 

  4. 4.

    Kim, D.-H. et al. Epidermal electronics. Science 333, 838–843 (2011).

    CAS  Article  Google Scholar 

  5. 5.

    Tian, L. et al. Flexible and stretchable 3ω sensors for thermal characterization of human skin. Adv. Funct. Mater. 27, 1701282 (2017).

    Article  Google Scholar 

  6. 6.

    Fan, J. A. et al. Fractal design concepts for stretchable electronics. Nat. Commun. 5, 3266 (2014).

    Article  Google Scholar 

  7. 7.

    Yeo, W.-H. et al. Multifunctional epidermal electronics printed directly onto the skin. Adv. Mater. 25, 2773–2778 (2013).

    CAS  Article  Google Scholar 

  8. 8.

    Webb, R. C. et al. Ultrathin conformal devices for precise and continuous thermal characterization of human skin. Nat. Mater. 12, 938–944 (2013).

    CAS  Article  Google Scholar 

  9. 9.

    Miyamoto, A. et al. Inflammation-free, gas-permeable, lightweight, stretchable on-skin electronics with nanomeshes. Nat. Nanotechnol. 12, 907–913 (2017).

    CAS  Article  Google Scholar 

  10. 10.

    Norton, J. J. S. et al. Soft, curved electrode systems capable of integration on the auricle as a persistent brain-computer interface. Proc. Natl Acad. Sci. USA 112, 3920–3925 (2015).

    CAS  Article  Google Scholar 

  11. 11.

    Jeong, J. W. et al. Materials and optimized designs for human-machine interfaces via epidermal electronics. Adv. Mater. 25, 6839–6846 (2013).

    CAS  Article  Google Scholar 

  12. 12.

    Xu, B. X. et al. An epidermal stimulation and sensing platform for sensorimotor prosthetic control, management of lower back exertion, and electrical muscle activation. Adv. Mater. 28, 4462–4471 (2016).

    CAS  Article  Google Scholar 

  13. 13.

    Won, S. M. et al. Recent advances in materials, devices, and systems for neural interfaces. Adv. Mater. 30, 1800534 (2018).

    Article  Google Scholar 

  14. 14.

    Minev, I. R. et al. Electronic dura mater for long-term multimodal neural interfaces. Science 347, 159–163 (2015).

    CAS  Article  Google Scholar 

  15. 15.

    Ullsperger, M. & Debener, S. (eds) Simultaneous EEG and fMRI: Recording, Analysis, and Application. (New York, Oxford University Press, 2010).

  16. 16.

    Ritter, P. & Villringer, A. Simultaneous EEG–fMRI. Neurosc. Biobehav. Rev. 30, 823–838 (2006).

    Article  Google Scholar 

  17. 17.

    MacIntosh, B. et al. Improving functional magnetic resonance imaging motor studies through simultaneous electromyography recordings. Hum. Brain Mapp. 28, 835–845 (2007).

    Article  Google Scholar 

  18. 18.

    Neuner, I., Arrubla, J., Felder, J. & Shah, N. J. Simultaneous EEG–fMRI acquisition at low, high and ultra-high magnetic fields up to 9.4 T: perspectives and challenges. Neuroimage 102, 71–79 (2014).

    Article  Google Scholar 

  19. 19.

    Matsumura, H. et al. Removal of adhesive wound dressing and its effects on the stratum corneum of the skin: comparison of eight different adhesive wound dressings. Int. Wound. J. 11, 50–54 (2014).

    Article  Google Scholar 

  20. 20.

    Lee, J. W. et al. Soft, thin skin-mounted power management systems and their use in wireless thermography. Proc. Natl Acad. Sci. USA 113, 6131–6136 (2016).

    CAS  Article  Google Scholar 

  21. 21.

    McAdams, E. T., Jossinet, J., Lackermeier, A. & Risacher, F. Factors affecting electrode–gel–skin interface impedance in electrical impedance tomography. Med. Biol. Eng. Comput. 34, 397–408 (1996).

    CAS  Article  Google Scholar 

  22. 22.

    Chi, Y. M., Jung, T. P. & Cauwenberghs, G. Dry-contact and noncontact biopotential electrodes: methodological review. IEEE Rev. Biomed. Eng. 3, 106–119 (2010).

    Article  Google Scholar 

  23. 23.

    Lee, S. M. et al. Self-adhesive epidermal carbon nanotube electronics for tether-free long-term continuous recording of biosignals. Sci. Rep. 4, (2014).

  24. 24.

    Kontturi, K., Murtomaki, L., Hirvonen, J., Paronen, P. & Urtti, A. Electrochemical characterization of human skin by impedance spectroscopy: the effect of penetration enhancers. Pharm. Res. 10, 381–385 (1993).

    CAS  Article  Google Scholar 

  25. 25.

    Kalia, Y. N. & Guy, R. H. The electrical characteristics of human skin in vivo. Pharm. Res. 12, 1605–1613 (1995).

    CAS  Article  Google Scholar 

  26. 26.

    Kuiken, T. A. et al. Targeted muscle reinnervation for real-time myoelectric control of multifunction artificial arms. JAMA 301, 619–628 (2009).

    CAS  Article  Google Scholar 

  27. 27.

    Chowdhury, R. H. et al. Surface electromyography signal processing and classification techniques. Sensors 13, 12431–12466 (2013).

    Article  Google Scholar 

  28. 28.

    Young, A. J., Hargrove, L. J. & Kuiken, T. A. The effects of electrode size and orientation on the sensitivity of myoelectric pattern recognition systems to electrode shift. IEEE Trans. Biomed. Eng. 58, 2537–2544 (2011).

    Article  Google Scholar 

  29. 29.

    Pan, L., Zhang, D., Jiang, N., Sheng, X. & Zhu, X. Improving robustness against electrode shift of high density EMG for myoelectric control through common spatial patterns. J. Neuroeng. Rehabil. 12, 110 (2015).

    Article  Google Scholar 

  30. 30.

    Young, A. J., Hargrove, L. J. & Kuiken, T. A. Improving myoelectric pattern recognition robustness to electrode shift by changing interelectrode distance and electrode configuration. IEEE Trans. Biomed. Eng. 59, 645–652 (2012).

    Article  Google Scholar 

  31. 31.

    Li, Q. X. et al. Improving robustness against electrode shift of sEMG based hand gesture recognition using online semi-supervised learning. 2016 International Conference on Machine Learning and Cybernetics. IEEE, 1, 344–349 (2016).

  32. 32.

    Keller, T. & Kuhn, A. Skin properties and the influence on electrode design for transcutaneous (surface) electrical stimulation. 2009 World Congress on Medical Physics and Biomedical Engineering. 492–495 (Springer, Heidelberg, 2009).

  33. 33.

    Kaczmarek, K. A., Webster, J. G., Bachyrita, P. & Tompkins, W. J. Electrotactile and vibrotactile displays for sensory substitution systems. IEEE Trans. Biomed. Eng. 38, 1–16 (1991).

    CAS  Article  Google Scholar 

  34. 34.

    Akhtar, A., Sombeck, J., Boyce, B. & Bretl, T. Controlling sensation intensity for electrotactile stimulation in human-machine interfaces. Sci. Robot. 3, 9770 (2018).

    Article  Google Scholar 

  35. 35.

    Ji, J., Porjesz, B., Begleiter, H. & Chorlian, D. P300: the similarities and differences in the scalp distribution of visual and auditory modality. Brain Topogr. 11, 315–327 (1999).

    CAS  Article  Google Scholar 

  36. 36.

    Singhal, A. et al. Electrophysiological correlates of fearful and sad distraction on target processing in adolescents with attention deficit-hyperactivity symptoms and affective disorders. Front. Integr. Neurosci. 6, 119 (2012).

    Article  Google Scholar 

  37. 37.

    Murray, M. M., Brunet, D. & Michel, C. M. Topographic ERP analyses: a step-by-step tutorial review. Brain Topogr. 20, 249–264 (2008).

    Article  Google Scholar 

  38. 38.

    Murray, M. M., De Lucia, M., Brunet, D. & Michel, C. M. in Brain Signal Analysis: Advances in Neuroelectric and Neuromagnetic Methods (ed. Handy, T. C.) 21–53 (MIT Press, Cambridge, 2009).

  39. 39.

    Muraja-Murro, A. et al. Forehead EEG electrode set versus full-head scalp EEG in 100 patients with altered mental state. Epilepsy Behav. 49, 245–249 (2015).

    Article  Google Scholar 

  40. 40.

    Huang, C.-S. et al. Knowledge-based identification of sleep stages based on two forehead electroencephalogram channels. Front. Neurosci. 8, 263 (2014).

    PubMed  PubMed Central  Google Scholar 

  41. 41.

    Lin, C. T. et al. Forehead EEG in support of future feasible personal healthcare solutions: sleep management, headache prevention, and depression treatment. IEEE Access 5, 10612–10621 (2017).

    Article  Google Scholar 

  42. 42.

    Wei-Long, Z. & Bao-Liang, L. A multimodal approach to estimating vigilance using EEG and forehead EOG. J. Neural Eng. 14, 026017 (2017).

    Article  Google Scholar 

  43. 43.

    Lemieux, L., Allen, P. J., Franconi, F., Symms, M. R. & Fish, D. R. Recording of EEG during fMRI experiments: patient safety. Magn. Reson. Med. 38, 943–952 (1997).

    CAS  Article  Google Scholar 

  44. 44.

    Kuusela, L., Turunen, S., Valanne, L. & Sipilä, O. Safety in simultaneous EEG-fMRI at 3 T: temperature measurements. Acta Radiol. 56, 739–745 (2015).

    Article  Google Scholar 

  45. 45.

    Lopez-Calderon, J. & Luck, S. J. ERPLAB: an open-source toolbox for the analysis of event related potentials. Front. Hum. Neurosci. 8, 213 (2014).

  46. 46.

    Taylor, R. Interpretation of the correlation coefficient: a basic review. J. Diagn. Med. Sonog. 6, 35–39 (1990).

    Article  Google Scholar 

  47. 47.

    Ansys HFSS User’s Guide (Ansys Inc., 2012).

  48. 48.

    Lenzi, T., Lipsey, J. & Sensinger, J. W. The RIC Arm—a small anthropomorphic transhumeral prosthesis. IEEE ASME Trans. Mechatron. 21, 2660–2671 (2016).

    Article  Google Scholar 

  49. 49.

    Delorme, A. & Makeig, S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 134, 9–21 (2004).

    Article  Google Scholar 

  50. 50.

    Dolcos, F. & McCarthy, G. Brain systems mediating cognitive interference by emotional distraction. J. Neurosci. 26, 2072–2079 (2006).

    CAS  Article  Google Scholar 

  51. 51.

    Iordan, A. D. & Dolcos, F. Brain activity and network interactions linked to valence-related differences in the impact of emotional distraction. Cereb. Cortex 27, 731–749 (2017).

    CAS  PubMed  Google Scholar 

Download references


Device fabrication and development were carried out in part in the Frederick Seitz Materials Research Laboratory Central Research Facilities and Micro-Nano-Mechanical Systems Cleanroom, University of Illinois. L.T. acknowledges the support from Beckman Institute Postdoctoral Fellowship at UIUC. The materials and device engineering aspects of the research were supported by the Center for Bio-Integrated Electronics at Northwestern University. MRI experiments were performed at the Biomedical Imaging Center at the Beckman Institute, which also provided pilot hour support. K.J.Y. acknowledges the support from the National Research Foundation of Korea (grant nos NRF-2017R1C1B5017728 and NRF-2018M3A7B4071109) and the Yonsei University Future-leading Research Initiative (grant nos RMS2 2018-22-0028). Z.X. acknowledges the support from National Natural Science Foundation of China (grant no. 11402134). Y.H. acknowledges the support from NSF (grant nos 1400169, 1534120 and 1635443). J.W.L. gratefully acknowledges support from National Research Foundation of Korea (grant nos NRF-2017M3A7B4049466 and NRF-2018R1C1B5045721). M.M. acknowledges the support provided by Beckman Institute Predoctoral and Postdoctoral Fellowships. F.D. acknowledges the support provided by a Helen Corley Petit Scholarship in Liberal Arts and Sciences and an Emanuel Donchin Professorial Scholarship in Psychology from the University of Illinois. The authors would like to thank F. Lam for valuable discussions on electromagnetic simulations. We thank representatives of BrainVision LLC and Easycap GmbH for helpful conversations related to the equipment adaptations required for this project.

Author information




L.T., B.Z., A.A., K.J.Y. and J.A.R. designed the project. L.T., B.Z., B.M., K.E.M, M.F. and G.G. conceived and performed long-term EEG studies. L.T., A.A., J.C., M.F., T.B. and L.J.H. conceived and performed EMG experiments on patients for prosthesis control. L.T., B.Z., M.M., R.J.L., J.A.F. and F.D. performed simultaneous electrophysiological recordings and MRI. J.W.L., J.L., Y.L., S.Q., J.Z. and P.V.B. assisted in the fabrication of devices and materials characterization. X.G., J.W., Z.X., Y.M., Y.Z. and Y.H. performed the mechanical and electromagnetic simulations. L.T., B.Z., A.A., M.M. and J.A.R. wrote the manuscript and K.E.M, R.J.L., J.A.F. J.W., Y.H. and F.D. provided feedback on the manuscript.

Corresponding author

Correspondence to John A. Rogers.

Ethics declarations

Competing interests

The authors declare no competing interests

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary figures, tables and references.

Reporting Summary

Supplementary Video 1

Signals obtained with the epidermal EMG array allow an amputee to control elbow, wrist and hand movements on the prosthesis.

Supplementary Video 2

Robustness of motion classification on vigorous tapping on the electrodes.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tian, L., Zimmerman, B., Akhtar, A. et al. Large-area MRI-compatible epidermal electronic interfaces for prosthetic control and cognitive monitoring. Nat Biomed Eng 3, 194–205 (2019).

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing