Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Low-cost thermophoretic profiling of extracellular-vesicle surface proteins for the early detection and classification of cancers


Non-invasive assays for early cancer screening are hampered by challenges in the isolation and profiling of circulating biomarkers. Here, we show that surface proteins from serum extracellular vesicles labelled with a panel of seven fluorescent aptamers can be profiled, via thermophoretic enrichment and linear discriminant analysis, for cancer detection and classification. In a cohort of 102 patients, including 6 cancer types at stages I–IV, the assay detected stage I cancers with 95% sensitivity (95% confidence interval (CI): 74–100%) and 100% specificity (95% CI: 80–100%), and classified the cancer type with an overall accuracy of 68% (95% CI: 59–77%). For patients who underwent prostate biopsies, the assay was superior to the analysis of prostate-specific antigen levels (area under the curve: 0.94 versus 0.68; 33 patients) for the discrimination of prostate cancer and benign prostate enlargement, and also in the assessment of biochemical cancer recurrence after radical prostatectomy. The assay is inexpensive, fast, and requires small serum volumes (<1 µl), and if validated in larger cohorts may facilitate cancer screening, classification and monitoring.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Overview of TAS for the profiling of surface proteins of EVs.
Fig. 2: Characterization of thermophoretic accumulation.
Fig. 3: Characterization of TAS to profile surface proteins of EVs.
Fig. 4: EV surface protein profiles in cancer patients, as measured by TAS.
Fig. 5: Multiclass cancer diagnostics enabled by EV surface protein profiles.
Fig. 6: Detection and classification of cancers in a validation cohort.
Fig. 7: EV-based liquid biopsy in prostate cancer.

Code availability

Custom code for linear discriminant analysis is available within the Supplementary Information.

Data availability

All data supporting the findings of this study are available within the paper and its Supplementary Information. Raw imaging data are available from the corresponding author upon reasonable request.


  1. 1.

    Ramaswamy, S. et al. Multiclass cancer diagnosis using tumor gene expression signatures. Proc. Natl Acad. Sci. USA 98, 15149–15154 (2001).

    CAS  Article  Google Scholar 

  2. 2.

    Cohen, J. D. et al. Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science 359, 926–930 (2018).

    CAS  Article  Google Scholar 

  3. 3.

    Best, M. et al. RNA-Seq of tumor-educated platelets enables blood-based pan-cancer, multiclass, and molecular pathway cancer diagnostics. Cancer Cell 28, 666–676 (2015).

    CAS  Article  Google Scholar 

  4. 4.

    Wan, J. C. M. et al. Liquid biopsies come of age: towards implementation of circulating tumour DNA. Nat. Rev. Cancer 17, 223–238 (2017).

    CAS  Article  Google Scholar 

  5. 5.

    Alix-Panabières, C., Schwarzenbach, H. & Pantel, K. Circulating tumor cells and circulating tumor DNA. Annu. Rev. Med. 63, 199–215 (2012).

    Article  Google Scholar 

  6. 6.

    Poudineh, M., Sargent, E. H., Pantel, K. & Kelley, S. O. Profiling circulating tumour cells and other biomarkers of invasive cancers. Nat. Biomed. Eng. 2, 72–84 (2018).

    Article  Google Scholar 

  7. 7.

    Schiro, P. G. et al. Sensitive and high-throughput isolation of rare cells from peripheral blood with ensemble-decision aliquot ranking. Angew. Chem. Int. Ed. 51, 4618–4622 (2012).

    CAS  Article  Google Scholar 

  8. 8.

    Warkiani, M. E. et al. Ultra-fast, label-free isolation of circulating tumor cells from blood using spiral microfluidics. Nat. Protoc. 11, 134–148 (2015).

    Article  Google Scholar 

  9. 9.

    Peinado, H. et al. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat. Med. 18, 883–891 (2012).

    CAS  Article  Google Scholar 

  10. 10.

    Luga, V. et al. Exosomes mediate stromal mobilization of autocrine Wnt-PCP signaling in breast cancer cell migration. Cell 151, 1542–1556 (2012).

    CAS  Article  Google Scholar 

  11. 11.

    Théry, C. Diagnosis by extracellular vesicles. Nature 523, 161–162 (2015).

    Article  Google Scholar 

  12. 12.

    Shurtleff, M. J., Temoche-Diaz, M. M. & Schekman, R. Extracellular vesicles and cancer: caveat lector. Annu. Rev. Cancer Biol. 2, 395–411 (2018).

    Article  Google Scholar 

  13. 13.

    Van Niel, G., D’Angelo, G. & Raposo, G. Shedding light on the cell biology of extracellular vesicles. Nat. Rev. Mol. Cell Biol. 19, 213–228 (2018).

    CAS  Article  Google Scholar 

  14. 14.

    Shao, H. et al. New technologies for analysis of extracellular vesicles. Chem. Rev. 118, 1917–1950 (2018).

    CAS  Article  Google Scholar 

  15. 15.

    Colombo, M., Raposo, G. & Théry, C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu. Rev. Cell Dev. Biol. 30, 255–289 (2014).

    CAS  Article  Google Scholar 

  16. 16.

    Thery, C., Zitvogel, L. & Amigorena, S. Exosomes: composition, biogenesis and function. Nat. Rev. Immunol. 2, 569–579 (2002).

    CAS  Article  Google Scholar 

  17. 17.

    Thery, C., Ostrowski, M. & Segura, E. Membrane vesicles as conveyors of immune responses. Nat. Rev. Immunol. 9, 581–593 (2009).

    CAS  Article  Google Scholar 

  18. 18.

    Vlassov, A. V., Magdaleno, S., Setterquist, R. & Conrad, R. Exosomes: current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials. Biochim. Biophys. Acta Gen. Subj. 1820, 940–948 (2012).

    CAS  Article  Google Scholar 

  19. 19.

    Lee, K. et al. Multiplexed profiling of single extracellular vesicles. ACS Nano 12, 494–503 (2018).

    CAS  Article  Google Scholar 

  20. 20.

    Yoshioka, Y. et al. Ultra-sensitive liquid biopsy of circulating extracellular vesicles using ExoScreen. Nat. Commun. 5, 3591 (2014).

    Article  Google Scholar 

  21. 21.

    Yang, K. S. et al. Multiparametric plasma EV profiling facilitates diagnosis of pancreatic malignancy. Sci. Transl. Med. 9, eaal3226 (2017).

    Article  Google Scholar 

  22. 22.

    Im, H. et al. Label-free detection and molecular profiling of exosomes with a nano-plasmonic sensor. Nat. Biotechnol. 32, 490–495 (2014).

    CAS  Article  Google Scholar 

  23. 23.

    Lamparski, H. G. et al. Production and characterization of clinical grade exosomes derived from dendritic cells. J. Immunol. Methods 270, 211–226 (2002).

    CAS  Article  Google Scholar 

  24. 24.

    Witwer, K. W. et al. Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J. Extracell. Vesicles 2, 20360 (2013).

    Article  Google Scholar 

  25. 25.

    Chhabra, R. et al. Spatially addressable multiprotein nanoarrays templated by aptamer-tagged DNA nanoarchitectures. J. Am. Chem. Soc. 129, 10304–10305 (2007).

    CAS  Article  Google Scholar 

  26. 26.

    Xiang, Y. & Lu, Y. Using personal glucose meters and functional DNA sensors to quantify a variety of analytical targets. Nat. Chem. 3, 697–703 (2011).

    CAS  Article  Google Scholar 

  27. 27.

    Liang, H. et al. Functional DNA-containing nanomaterials: cellular applications in biosensing, imaging, and targeted therapy. Accounts Chem. Res. 47, 1891–1901 (2014).

    CAS  Article  Google Scholar 

  28. 28.

    Zhang, L. et al. Molecular elucidation of disease biomarkers at the interface of chemistry and biology. J. Am. Chem. Soc. 139, 2532–2540 (2017).

    CAS  Article  Google Scholar 

  29. 29.

    Duhr, S. & Braun, D. Why molecules move along a temperature gradient. Proc. Natl Acad. Sci. USA 103, 19678–19682 (2006).

    CAS  Article  Google Scholar 

  30. 30.

    Shao, H. et al. Chip-based analysis of exosomal mRNA mediating drug resistance in glioblastoma. Nat. Commun. 6, 6999 (2015).

    CAS  Article  Google Scholar 

  31. 31.

    Song, Y. et al. Selection of DNA aptamers against epithelial cell adhesion molecule for cancer cell imaging and circulating tumor cell capture. Anal. Chem. 85, 4141–4149 (2013).

    CAS  Article  Google Scholar 

  32. 32.

    Jiang, Y. et al. Aptamer/AuNP biosensor for colorimetric profiling of exosomal proteins. Angew. Chem. Int. Ed. 56, 11916–11920 (2017).

    CAS  Article  Google Scholar 

  33. 33.

    Wan, S. et al. Molecular recognition-based DNA nanoassemblies on the surfaces of nanosized exosomes. J. Am. Chem. Soc. 139, 5289–5292 (2017).

    CAS  Article  Google Scholar 

  34. 34.

    Wang, S. et al. Aptasensor with expanded nucleotide using DNA nanotetrahedra for electrochemical detection of cancerous exosomes. ACS Nano 11, 3943–3949 (2017).

    CAS  Article  Google Scholar 

  35. 35.

    Hishida, M. et al. Protein tyrosine kinase 7: a hepatocellular carcinoma-related gene detected by triple-combination array. J. Surg. Res. 195, 444–453 (2015).

    CAS  Article  Google Scholar 

  36. 36.

    Subik, K. et al. The expression patterns of ER, PR, HER2, CK5/6, EGFR, Ki-67 and AR by immunohistochemical analysis in breast cancer cell lines. Breast Cancer (Auckl) 4, 35–41 (2010).

    PubMed Central  Google Scholar 

  37. 37.

    Poudineh, M. et al. Tracking the dynamics of circulating tumour cell phenotypes using nanoparticle-mediated magnetic ranking. Nat. Nanotech. 12, 274–281 (2016).

    Article  Google Scholar 

  38. 38.

    Im, H. et al. Design and clinical validation of a point-of-care device for the diagnosis of lymphoma via contrast-enhanced microholography and machine learning. Nat. Biomed. Eng. 2, 666–674 (2018).

    Article  Google Scholar 

  39. 39.

    Djavan, B. O. B. et al. Optimal predictors of prostate cancer on repeat prostate biopsy: a prospective study of 1,051 men. J. Urol. 163, 1144–1149 (2000).

    CAS  Article  Google Scholar 

  40. 40.

    Freedland, S. J. et al. Risk of prostate cancer-specific mortality following biochemical recurrence after radical prostatectomy. J. Am. Med. Assoc. 294, 433–439 (2005).

    CAS  Article  Google Scholar 

  41. 41.

    Contreras-Naranjo, J. C., Wu, H.-J. & Ugaz, V. M. Microfluidics for exosome isolation and analysis: enabling liquid biopsy for personalized medicine. Lab Chip 17, 3558–3577 (2017).

    CAS  Article  Google Scholar 

  42. 42.

    Im, H., Lee, K., Weissleder, R., Lee, H. & Castro, C. M. Novel nanosensing technologies for exosome detection and profiling. Lab Chip 17, 2892–2898 (2017).

    CAS  Article  Google Scholar 

  43. 43.

    Zhou, J. & Rossi, J. Aptamers as targeted therapeutics: current potential and challenges. Nat. Rev. Drug Discov. 16, 181–202 (2016).

    Article  Google Scholar 

  44. 44.

    Chant, C., Wilson, G. & Friedrich, J. O. Anemia, transfusion, and phlebotomy practices in critically ill patients with prolonged ICU length of stay: a cohort study. Crit. Care 10, R140 (2006).

    Article  Google Scholar 

  45. 45.

    Park, J. et al. Analyses of intravesicular exosomal proteins using a nano-plasmonic system. ACS Photonics 5, 487–494 (2018).

    CAS  Article  Google Scholar 

  46. 46.

    Lin, L. et al. Thermophoretic tweezers for low-power and versatile manipulation of biological cells. ACS Nano 11, 3147–3154 (2017).

    CAS  Article  Google Scholar 

  47. 47.

    Ross, D., Gaitan, M. & Locascio, L. E. Temperature measurement in microfluidic systems using a temperature-dependent fluorescent dye. Anal. Chem. 73, 4117–4123 (2001).

    CAS  Article  Google Scholar 

  48. 48.

    Braun, D. & Libchaber, A. Trapping of DNA by thermophoretic depletion and convection. Phys. Rev. Lett. 89, 188103 (2002).

    Article  Google Scholar 

  49. 49.

    Talbot, E. L., Kotar, J., Parolini, L., Di Michele, L. & Cicuta, P. Thermophoretic migration of vesicles depends on mean temperature and head group chemistry. Nat. Commun. 8, 15351 (2017).

    CAS  Article  Google Scholar 

Download references


This work was supported financially by the NSFC (21622503 and 21475028), Youth Innovation Promotion Association of CAS (2016035) and Beijing Municipal Science and Technology Commission (Z171100001117135 and Z161100004916095).

Author information




J.S. and W.T. directed the research. J.S. and C.L. conceived the idea. J.Z., C.L., F.T., L.C., W.Z., Q.F., J.C., F.W. and Y.Y. performed the experiments. C.L. performed the CFD simulation and LDA algorithm. B. Dai, Y.C. and B. Ding assisted with data interpretation. All authors discussed the results and wrote the paper.

Corresponding author

Correspondence to Jiashu Sun.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary figures, tables and code.

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Zhao, J., Tian, F. et al. Low-cost thermophoretic profiling of extracellular-vesicle surface proteins for the early detection and classification of cancers. Nat Biomed Eng 3, 183–193 (2019).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing