Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Interleukin-31-mediated photoablation of pruritogenic epidermal neurons reduces itch-associated behaviours in mice

Abstract

Itch—a major symptom of many chronic skin diseases—can exacerbate inflammation by provoking scratching and subsequent skin damage. Here, we show that activation, via near infrared illumination, of a phototoxic agent that selectively targets itch-sensing cells can reduce itch-associated behaviours in mice. We generated a SNAP-tagged interleukin-31 (IL-31) ligand derivative (IL-31K138A–SNAP) that selectively binds receptors on itch-associated cells, without evoking IL-31-receptor signalling or scratching, and conjugated it to the photosensitizer IRDye 700DX phthalocyanine. Subcutaneous injection of IL-31K138A–SNAP–IR700 in mice followed by near infrared illumination resulted in the long-term reversal of the scratching behaviour evoked by the pruritogenic IL-31, an effect that was associated with the selective retraction of itch-sensing neurons in the skin. We also show that a topical preparation of IL-31K138A–SNAP–IR700 reversed the behavioural and dermatological indicators of disease in mouse models of atopic dermatitis and of the genetic skin disease familial primary localized cutaneous amyloidosis. Targeted photoablation may enable itch control for the treatment of inflammatory skin diseases.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: IL-31SNAP labelling and photoablation.
Fig. 2: Functional analysis of IL-31K138A–SNAP.
Fig. 3: IL-31K138A–SNAP-guided photoablation prevents and reverses atopic dermatitis-like symptoms.
Fig. 4: IL-31K138A–SNAP-guided photoablation reverses the indicators of FPLCA.
Fig. 5: Epidermal free nerve endings are the cellular target of IL-31K138A–SNAP-guided photoablation.

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Ikoma, A., Steinhoff, M., Stander, S., Yosipovitch, G. & Schmelz, M. The neurobiology of itch. Nat. Rev. Neurosci. 7, 535–547 (2006).

    Article  CAS  Google Scholar 

  2. Davidson, S. & Giesler, G. J. The multiple pathways for itch and their interactions with pain. Trends Neurosci. 33, 550–558 (2010).

    Article  CAS  Google Scholar 

  3. Wahlgren, C. F. Itch and atopic dermatitis: an overview. J. Dermatol. 26, 770–779 (1999).

    Article  CAS  Google Scholar 

  4. Elmariah, S. B. & Lerner, E. A. Topical therapies for pruritus. Semin. Cutan. Med. Surg. 30, 118–126 (2011).

    Article  CAS  Google Scholar 

  5. Bautista, D. M., Wilson, S. R. & Hoon, M. A. Why we scratch an itch: the molecules, cells and circuits of itch. Nat. Neurosci. 17, 175–182 (2014).

    Article  CAS  Google Scholar 

  6. Rossbach, K. et al. Histamine H1, H3 and H4 receptors are involved in pruritus. Neuroscience 190, 89–102 (2011).

    Article  CAS  Google Scholar 

  7. Liu, Q. et al. Sensory neuron-specific GPCR Mrgprs are itch receptors mediating chloroquine-induced pruritus. Cell 139, 1353–1365 (2009).

    Article  Google Scholar 

  8. Reich, A. & Szepietowski, J. C. Mediators of pruritus in psoriasis. Mediat. Inflamm. 2007, 64727 (2007).

    Article  Google Scholar 

  9. Takano, N., Arai, I., Hashimoto, Y. & Kurachi, M. Evaluation of antipruritic effects of several agents on scratching behavior by NC/Nga mice. Eur. J. Pharmacol. 495, 159–165 (2004).

    Article  CAS  Google Scholar 

  10. Steinhoff, M. et al. Neurophysiological, neuroimmunological, and neuroendocrine basis of pruritus. J. Invest. Dermatol. 126, 1705–1718 (2006).

    Article  CAS  Google Scholar 

  11. Dillon, S. R. et al. Interleukin 31, a cytokine produced by activated T cells, induces dermatitis in mice. Nat. Immunol. 5, 752–760 (2004).

    Article  CAS  Google Scholar 

  12. Grimstad, O. et al. Anti-interleukin-31-antibodies ameliorate scratching behaviour in NC/Nga mice: a model of atopic dermatitis. Exp. Dermatol. 18, 35–43 (2009).

    Article  CAS  Google Scholar 

  13. Bando, T., Morikawa, Y., Komori, T. & Senba, E. Complete overlap of interleukin-31 receptor A and oncostatin M receptor beta in the adult dorsal root ganglia with distinct developmental expression patterns. Neuroscience 142, 1263–1271 (2006).

    Article  CAS  Google Scholar 

  14. Diveu, C. et al. Predominant expression of the long isoform of GP130-like (GPL) receptor is required for interleukin-31 signaling. Eur. Cytokine Netw. 15, 291–302 (2004).

    CAS  PubMed  Google Scholar 

  15. Sonkoly, E. et al. IL-31: a new link between T cells and pruritus in atopic skin inflammation. J. Allergy Clin. Immunol. 117, 411–417 (2006).

    Article  CAS  Google Scholar 

  16. Miyagaki, T. et al. Increased CCL18 expression in patients with cutaneous T-cell lymphoma: association with disease severity and prognosis. J. Eur. Acad. Dermatol. Venereol. 27, e60–e67 (2013).

    Article  CAS  Google Scholar 

  17. Raap, U. et al. Increased levels of serum IL-31 in chronic spontaneous urticaria. Exp. Dermatol. 19, 464–466 (2010).

    Article  CAS  Google Scholar 

  18. Ohmatsu, H. et al. Serum IL-31 levels are increased in patients with cutaneous T-cell lymphoma. Acta Derm. Venereol. 92, 282–283 (2012).

    Article  CAS  Google Scholar 

  19. Takaoka, A. et al. Expression of IL-31 gene transcripts in NC/Nga mice with atopic dermatitis. Eur. J. Pharmacol. 516, 180–181 (2005).

    Article  CAS  Google Scholar 

  20. Li, M. et al. Topical vitamin D3 and low-calcemic analogs induce thymic stromal lymphopoietin in mouse keratinocytes and trigger an atopic dermatitis. Proc. Natl Acad. Sci. USA 103, 11736–11741 (2006).

    Article  CAS  Google Scholar 

  21. Raap, U. et al. Correlation of IL-31 serum levels with severity of atopic dermatitis. J. Allergy Clin. Immunol. 122, 421–423 (2008).

    Article  CAS  Google Scholar 

  22. Singer, E. M. et al. IL-31 is produced by the malignant T-cell population in cutaneous T-cell lymphoma and correlates with CTCL pruritus. J. Invest. Dermatol. 133, 2783–2785 (2013).

    Article  CAS  Google Scholar 

  23. Schulz, F. et al. A common haplotype of the IL-31 gene influencing gene expression is associated with nonatopic eczema. J. Allergy Clin. Immunol. 120, 1097–1102 (2007).

    Article  CAS  Google Scholar 

  24. Tanaka, A. et al. New insight into mechanisms of pruritus from molecular studies on familial primary localized cutaneous amyloidosis. Br. J. Dermatol. 161, 1217–1224 (2009).

    Article  CAS  Google Scholar 

  25. Lee, D. D. et al. Genome-wide scan identifies a susceptibility locus for familial primary cutaneous amyloidosis on chromosome 5p13.1-q11.2. Br. J. Dermatol. 155, 1201–1208 (2006).

    Article  CAS  Google Scholar 

  26. Arita, K. et al. Oncostatin M receptor-β mutations underlie familial primary localized cutaneous amyloidosis. Am. J. Hum. Genet. 82, 73–80 (2008).

    Article  CAS  Google Scholar 

  27. Lin, M. W. et al. Novel IL31RA gene mutation and ancestral OSMR mutant allele in familial primary cutaneous amyloidosis. Eur. J. Hum. Genet. 18, 26–32 (2010).

    Article  CAS  Google Scholar 

  28. Wang, W. H. et al. A new c.1845A→T of oncostatin M receptor-β mutation and slightly enhanced oncostatin M receptor-β expression in a Chinese family with primary localized cutaneous amyloidosis. Eur. J. Dermatol. 22, 29–33 (2012).

    PubMed  Google Scholar 

  29. Zhang, Q., Putheti, P., Zhou, Q., Liu, Q. & Gao, W. Structures and biological functions of IL-31 and IL-31 receptors. Cytokine Growth Factor Rev. 19, 347–356 (2008).

    Article  Google Scholar 

  30. Greaves, M. W. & Khalifa, N. Itch: more than skin deep. Int. Arch. Allergy Immunol. 135, 166–172 (2004).

    Article  Google Scholar 

  31. Ruzicka, T. et al. Anti-interleukin-31 receptor A antibody for atopic dermatitis. N. Engl. J. Med. 376, 826–835 (2017).

    Article  CAS  Google Scholar 

  32. Nemoto, O. et al. The first trial of CIM331, a humanized antihuman interleukin-31 receptor A antibody, in healthy volunteers and patients with atopic dermatitis to evaluate safety, tolerability and pharmacokinetics of a single dose in a randomized, double-blind, placebo-controlled study. Br. J. Dermatol. 174, 296–304 (2016).

    Article  CAS  Google Scholar 

  33. Amoury, M. et al. Photoimmunotheranostic agents for triple-negative breast cancer diagnosis and therapy that can be activated on demand. Oncotarget 7, 54925–54936 (2016).

  34. Le Saux, S. et al. Molecular dissection of human interleukin-31-mediated signal transduction through site-directed mutagenesis. J. Biol. Chem. 285, 3470–3477 (2010).

    Article  Google Scholar 

  35. Dreuw, A. et al. Characterization of the signaling capacities of the novel gp130-like cytokine receptor. J. Biol. Chem. 279, 36112–36120 (2004).

    Article  CAS  Google Scholar 

  36. Himes, R., Lee, S., McMenigall, K. & Russell-Jones, G. J. Reduction in inflammation in the footpad of carrageenan treated mice following the topical administration of anti-TNF molecules formulated in a micro-emulsion. J. Control Release 145, 210–213 (2010).

    Article  CAS  Google Scholar 

  37. Tanaka, A. et al. The molecular skin pathology of familial primary localized cutaneous amyloidosis. Exp. Dermatol. 19, 416–423 (2010).

    Article  CAS  Google Scholar 

  38. Neis, M. M. et al. Enhanced expression levels of IL-31 correlate with IL-4 and IL-13 in atopic and allergic contact dermatitis. J. Allergy Clin. Immunol. 118, 930–937 (2006).

    Article  CAS  Google Scholar 

  39. Horejs-Hoeck, J. et al. Dendritic cells activated by IFN-ɣ/STAT1 express IL-31 receptor and release proinflammatory mediators upon IL-31 treatment. J. Immunol. 188, 5319–5326 (2012).

    Article  CAS  Google Scholar 

  40. Heise, R. et al. IL-31 receptor alpha expression in epidermal keratinocytes is modulated by cell differentiation and interferon gamma. J. Invest. Dermatol. 129, 240–243 (2009).

    Article  CAS  Google Scholar 

  41. Cornelissen, C., Luscher-Firzlaff, J., Baron, J. M. & Luscher, B. Signaling by IL-31 and functional consequences. Eur. J. Cell Biol. 91, 552–566 (2012).

    Article  CAS  Google Scholar 

  42. Oetjen, L. K. et al. Sensory neurons co-opt classical immune signaling pathways to mediate chronic itch. Cell 171, 217–228 (2017).

    Article  CAS  Google Scholar 

  43. Mollanazar, N. K., Smith, P. K. & Yosipovitch, G. Mediators of chronic pruritus in atopic dermatitis: getting the itch out? Clin. Rev. Allergy Immunol. 51, 263–292 (2016).

    Article  CAS  Google Scholar 

  44. Osinka, K., Dumycz, K., Kwiek, B. & Feleszko, W. Novel therapeutic approaches to atopic dermatitis. Arch. Immunol. Ther. Exp. 66, 171–181 (2017).

  45. Dolgin, E. First eczema biologic debuts but price could restrict use. Nat. Biotechnol. 35, 391–392 (2017).

    Article  CAS  Google Scholar 

  46. Beck, L. A. et al. Dupilumab treatment in adults with moderate-to-severe atopic dermatitis. N. Engl. J. Med. 371, 130–139 (2014).

    Article  Google Scholar 

  47. Thaci, D. et al. Efficacy and safety of dupilumab in adults with moderate-to-severe atopic dermatitis inadequately controlled by topical treatments: a randomised, placebo-controlled, dose-ranging phase 2b trial. Lancet 387, 40–52 (2016).

    Article  CAS  Google Scholar 

  48. Furue, M., Yamamura, K., Kido-Nakahara, M., Nakahara, T. & Fukui, Y. Emerging role of interleukin-31 and interleukin-31 receptor in pruritus in atopic dermatitis. Allergy 73, 29–36 (2017).

  49. Mitsunaga, M. et al. Cancer cell-selective in vivo near infrared photoimmunotherapy targeting specific membrane molecules. Nat. Med. 17, 1685–1691 (2011).

    Article  CAS  Google Scholar 

  50. Cedeno-Laurent, F. et al. Improved pruritus correlates with lower levels of IL-31 in CTCL patients under different therapeutic modalities. Clin. Immunol. 158, 1–7 (2015).

    Article  CAS  Google Scholar 

  51. Gonzales, A. J. et al. Oclacitinib (APOQUEL) is a novel Janus kinase inhibitor with activity against cytokines involved in allergy. J. Vet. Pharmacol. Ther. 37, 317–324 (2014).

    Article  CAS  Google Scholar 

  52. Yang, G. et al. Genetic targeting of chemical indicators in vivo. Nat. Methods 12, 137–139 (2015).

    Article  CAS  Google Scholar 

  53. Han, L. et al. A subpopulation of nociceptors specifically linked to itch. Nat. Neurosci. 16, 174–182 (2013).

    Article  CAS  Google Scholar 

  54. Stantcheva, K. K. et al. A subpopulation of itch-sensing neurons marked by Ret and somatostatin expression. EMBO Rep. 17, 585–600 (2016).

    Article  CAS  Google Scholar 

  55. Cevikbas, F. et al. A sensory neuron-expressed IL-31 receptor mediates T helper cell-dependent itch: involvement of TRPV1 and TRPA1. J. Allergy Clin. Immunol. 133, 448–460 (2014).

    Article  CAS  Google Scholar 

  56. Usoskin, D. et al. Unbiased classification of sensory neuron types by large-scale single-cell RNA sequencing. Nat. Neurosci. 18, 145–153 (2015).

    Article  CAS  Google Scholar 

  57. Wilson, S. R. et al. The epithelial cell-derived atopic dermatitis cytokine TSLP activates neurons to induce itch. Cell 155, 285–295 (2013).

    Article  CAS  Google Scholar 

  58. Rivard, J. & Lim, H. W. Ultraviolet phototherapy for pruritus. Dermatol. Ther. 18, 344–354 (2005).

    Article  Google Scholar 

  59. Tarng, D. C., Cho, Y. L., Liu, H. N. & Huang, T. P. Hemodialysis-related pruritus: a double-blind, placebo-controlled, crossover study of capsaicin 0.025% cream. Nephron 72, 617–622 (1996).

    Article  CAS  Google Scholar 

  60. Wallengren, J. & Klinker, M. Successful treatment of notalgia paresthetica with topical capsaicin: vehicle-controlled, double-blind, crossover study. J. Am. Acad. Dermatol. 32, 287–289 (1995).

    Article  CAS  Google Scholar 

  61. Stander, S., Luger, T. & Metze, D. Treatment of prurigo nodularis with topical capsaicin. J. Am. Acad. Dermatol. 44, 471–478 (2001).

    Article  CAS  Google Scholar 

  62. Anand, P. & Bley, K. Topical capsaicin for pain management: therapeutic potential and mechanisms of action of the new high-concentration capsaicin 8% patch. Br. J. Anaesth. 107, 490–502 (2011).

    Article  CAS  Google Scholar 

  63. Wallengren, J. & Sundler, F. Phototherapy reduces the number of epidermal and CGRP-positive dermal nerve fibres. Acta Derm. Venereol. 84, 111–115 (2004).

    Article  CAS  Google Scholar 

  64. Hong, J., Buddenkotte, J., Berger, T. G. & Steinhoff, M. Management of itch in atopic dermatitis. Semin. Cutan. Med. Surg. 30, 71–86 (2011).

    Article  CAS  Google Scholar 

  65. Dhandapani, R. et al. Control of mechanical pain hypersensitivity in mice through ligand-targeted photoablation of TrkB-positive sensory neurons. Nat. Commun. 9, 1640 (2018).

    Article  Google Scholar 

  66. Directive n. 86/609 / EEC on the protection of animals used for experimental and other scientific purposes (Gazzetta Ufficiale della Repubblica Italiana, 1992); http://www.gazzettaufficiale.it/eli/id/1992/02/18/092G0157/sg

  67. Lichti, U., Anders, J. & Yuspa, S. H. Isolation and short-term culture of primary keratinocytes, hair follicle populations and dermal cells from newborn mice and keratinocytes from adult mice for in vitro analysis and for grafting to immunodeficient mice. Nat. Protoc. 3, 799–810 (2008).

    Article  CAS  Google Scholar 

  68. McArthur, J. C., Stocks, E. A., Hauer, P., Cornblath, D. R. & Griffin, J. W. Epidermal nerve fiber density: normative reference range and diagnostic efficiency. Arch. Neurol. 55, 1513–1520 (1998).

    Article  CAS  Google Scholar 

  69. Helft, J. & Merad, M. Isolation of cutaneous dendritic cells. Methods Mol. Biol. 595, 231–233 (2010).

    Article  Google Scholar 

  70. Stoitzner, P., Romani, N., McLellan, A. D., Tripp, C. H. & Ebner, S. Isolation of skin dendritic cells from mouse and man. Methods Mol. Biol. 595, 235–248 (2010).

    Article  Google Scholar 

  71. Bonin, R. P., Bories, C. & De Koninck, Y. A simplified up-down method (SUDO) for measuring mechanical nociception in rodents using von Frey filaments. Mol. Pain 10, 26 (2014).

    Article  Google Scholar 

  72. Aida, T. et al. Cloning-free CRISPR/Cas system facilitates functional cassette knock-in in mice. Genome. Biol. 16, 87 (2015).

    Article  Google Scholar 

  73. Di, T. T. et al. Astilbin inhibits Th17 cell differentiation and ameliorates imiquimod-induced psoriasis-like skin lesions in BALB/c mice via Jak3/Stat3 signaling pathway. Int. Immunopharmacol. 32, 32–38 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank P. Moreira of EMBL Transgenic Services, V. Paribeni and M. Gaetani for technical support of our work. We also acknowledge the assistance of the Protein Expression and Purification Core Facility for the generation of IL-31SNAP, IL-31K138A–SNAP and Cas9. This work was funded by EMBL and Fondazione Telethon.

Author information

Authors and Affiliations

Authors

Contributions

L.N. and P.A.H. conceived the study. L.N. performed the experiments together with N.R., M.D., R.D., A.T. and L.C. M.M. performed gel analyses with IL-31SNAP and IL-31K138A–SNAP and synthesized BG–IR700. E.P. contributed to histological experiments. C.H.C contributed to the FACS experiments and data analysis. L.N. and P.A.H. wrote the manuscript with input from all authors.

Corresponding authors

Correspondence to Linda Nocchi or Paul A. Heppenstall.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nocchi, L., Roy, N., D’Attilia, M. et al. Interleukin-31-mediated photoablation of pruritogenic epidermal neurons reduces itch-associated behaviours in mice. Nat Biomed Eng 3, 114–125 (2019). https://doi.org/10.1038/s41551-018-0328-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41551-018-0328-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing