Computational fluid dynamics with imaging of cleared tissue and of in vivo perfusion predicts drug uptake and treatment responses in tumours


Understanding the uptake of a drug by diseased tissue, and the drug’s subsequent spatiotemporal distribution, are central factors in the development of effective targeted therapies. However, the interaction between the pathophysiology of diseased tissue and individual therapeutic agents can be complex, and can vary across tissue types and across subjects. Here, we show that the combination of mathematical modelling, high-resolution optical imaging of intact and optically cleared tumour tissue from animal models, and in vivo imaging of vascular perfusion predicts the heterogeneous uptake, by large tissue samples, of specific therapeutic agents, as well as their spatiotemporal distribution. In particular, by using murine models of colorectal cancer and glioma, we report and validate predictions of steady-state blood flow and intravascular and interstitial fluid pressure in tumours, of the spatially heterogeneous uptake of chelated gadolinium by tumours, and of the effect of a vascular disrupting agent on tumour vasculature.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: The REANIMATE pipeline for in vivo and ex vivo imaging of intact tumours and performing three-dimensional computational fluid mechanics simulations.
Fig. 2: Three-dimensional blood vessel networks, segmented from optical imaging data acquired from complete colorectal carcinoma xenografts, and reconstructed in graphical format (diameters scaled according to their measured values).
Fig. 3: REANIMATE steady-state simulation results example LS174T and SW1222 colorectal adenocarcinoma xenografts.
Fig. 4: REANIMATE simulations of steady-state fluid dynamics (vascular and interstitial) in an orthotopic murine glioma model (GL261).
Fig. 5: REANIMATE simulation of Gd-DTPA delivery to an example LS174T tumour, compared with uptake measured in vivo with DCE-MRI.
Fig. 6: Dual-fluorophore, optical imaging of the response of colorectal carcinoma models (LS174T and SW1222) to treatment with a VDA (OXi4503).
Fig. 7: Results of REANIMATE simulations of blood flow, IFP and perfusion in an LS174T tumour.
Fig. 8: REANIMATE simulation predictions of OXi4503 delivery and treatment response.

Data availability

The authors declare that all data supporting the findings of this study are available within the paper and its Supplementary Information. Raw data generated from this study can be found at


  1. 1.

    Brocato, T. et al. Understanding drug resistance in breast cancer with mathematical oncology. Curr. Breast Cancer Rep. 6, 110–120 (2014).

    CAS  Article  Google Scholar 

  2. 2.

    Dobosz, M., Ntziachristos, V., Scheuer, W. & Strobel, S. Multispectral fluorescence ultramicroscopy: three-dimensional visualization and automatic quantification of tumor morphology, drug penetration, and antiangiogenic treatment response. Neoplasia 16, 1–13 (2014).

    Article  Google Scholar 

  3. 3.

    Jahrling, N., Becker, K. & Dodt, H. U. 3D-reconstruction of blood vessels by ultramicroscopy. Organogenesis 5, 227–230 (2009).

    Article  Google Scholar 

  4. 4.

    Walls, J. R., Sled, J. G., Sharpe, J. & Henkelman, R. M. Resolution improvement in emission optical projection tomography. Phys. Med. Biol. 52, 2775–2790 (2007).

    Article  Google Scholar 

  5. 5.

    Alizadeh, A. A. et al. Toward understanding and exploiting tumor heterogeneity. Nat. Med. 21, 846–853 (2015).

    CAS  Article  Google Scholar 

  6. 6.

    Jain, R. K. Transport of molecules in the tumor interstitium: a review. Cancer Res. 47, 3039–3051 (1987).

    CAS  PubMed  Google Scholar 

  7. 7.

    Housman, G. et al. Drug resistance in cancer: an overview. Cancers 6, 1769–1792 (2014).

    CAS  Article  Google Scholar 

  8. 8.

    Gaya, A., Akle, C. A., Mudan, S. & Grange, J. The concept of hormesis in cancer therapy - is less more? Cureus 7, e261 (2015).

    PubMed  PubMed Central  Google Scholar 

  9. 9.

    Johnson, S. al. Acute changes in liver tumour perfusion measured non-invasively with arterial spin labelling. Br. J. Cancer 114, 897–904 2016).

    CAS  Article  Google Scholar 

  10. 10.

    El Emir, E. et al. Predicting response to radioimmunotherapy from the tumor microenvironment of colorectal carcinomas. Cancer Res. 67, 11896–11905 (2007).

    CAS  Article  Google Scholar 

  11. 11.

    Folarin, A. A., Konerding, M. A., Timonen, J., Nagl, S. & Pedley, R. B. Three-dimensional analysis of tumour vascular corrosion casts using stereoimaging and micro-computed tomography. Microvasc. Res. 80, 89–98 2010).

    CAS  Article  Google Scholar 

  12. 12.

    Walker-Samuel, S. et al. In vivo imaging of glucose uptake and metabolism in tumors. Nat. Med. 19, 1067–1072 (2013).

    CAS  Article  Google Scholar 

  13. 13.

    Rajkumar, V. S. et al. A comparative study of PDGFR inhibition with imatinib on radiolabeled antibody targeting and clearance in two pathologically distinct models of colon adenocarcinoma. Tumour Biol. 33, 2019–2029 (2012).

    CAS  Article  Google Scholar 

  14. 14.

    El-Emir, E. et al. Characterisation and radioimmunotherapy of L19-SIP, an anti-angiogenic antibody against the extra domain B of fibronectin, in colorectal tumour models. Br. J. Cancer 96, 1862–1870 (2007).

    CAS  Article  Google Scholar 

  15. 15.

    Lankester, K. J. et al. Combretastatin A-4-phosphate effectively increases tumor retention of the therapeutic antibody, 131I-A5B7, even at doses that are sub-optimal for vascular shut-down. Int. J. Oncol. 30, 453–460 (2007).

    CAS  PubMed  Google Scholar 

  16. 16.

    d’Esposito, A., Nikitichev, D., Desjardins, A., Walker-Samuel, S. & Lythgoe, M. F. Quantification of light attenuation in optically cleared mouse brains. J. Biomed. Opt. 20, 80503 (2015).

    Article  Google Scholar 

  17. 17.

    Frangi, A. F., Niessen, W. J., Vincken, K. L. & Viergever, M. A. in Medical Image Computing and Computer-Assisted Intervention—MICCAI’98 (eds Wells, W. M., Colchester A. & Delp, S.) 130–137 (Springer, Berlin, Heidelberg, 1998).

  18. 18.

    Thomas, D. L., Lythgoe, M. F., Pell, G. S., Calamante, F. & Ordidge, R. J. The measurement of diffusion and perfusion in biological systems using magnetic resonance imaging. Phys. Med. Biol. 45, R97–R138 (2000).

    CAS  Article  Google Scholar 

  19. 19.

    Konerding, M. A. et al. Evidence for characteristic vascular patterns in solid tumours: quantitative studies using corrosion casts. Br. J. Cancer 80, 724–732 (1999).

    CAS  Article  Google Scholar 

  20. 20.

    Walker-Samuel, S. et al. Investigating low-velocity fluid flow in tumours using convection-MRI. Cancer Res. 78, 1859–1872 (2018).

  21. 21.

    Walker-Samuel, S. et al. Investigating low-velocity fluid flow in tumors with convection-MRI. Cancer Res. 78, 1859–1872 (2018).

    CAS  Article  Google Scholar 

  22. 22.

    Yuan, F. et al. Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size. Cancer Res. 55, 3752–3756 (1995).

    CAS  PubMed  Google Scholar 

  23. 23.

    Reyes-Aldasoro, C. C. et al. Estimation of apparent tumor vascular permeability from multiphoton fluorescence microscopic images of P22 rat sarcomas in vivo. Microcirculation 15, 65–79 (2008).

    CAS  Article  Google Scholar 

  24. 24.

    Panagiotaki, E. et al. Noninvasive quantification of solid tumor microstructure using VERDICT MRI. Cancer Res. 74, 1902–1912 (2014).

    CAS  Article  Google Scholar 

  25. 25.

    Tofts, P. S. Modeling tracer kinetics in dynamic Gd-DTPA MR imaging. J. Magn. Reson. Imaging 7, 91–101 (1997).

    CAS  Article  Google Scholar 

  26. 26.

    Koh, T. S. et al. In vivo measurement of gadolinium diffusivity by dynamic contrast-enhanced MRI: a preclinical study of human xenografts. Magn. Reson. Med. 69, 269–276 (2013).

    CAS  Article  Google Scholar 

  27. 27.

    Benjaminsen, I. C., Graff, B. A., Brurberg, K. G. & Rofstad, E. K. Assessment of tumor blood perfusion by high-resolution dynamic contrast-enhanced MRI: a preclinical study of human melanoma xenografts. Magn. Reson. Med. 52, 269–276 (2004).

    Article  Google Scholar 

  28. 28.

    Sheng, Y. et al. Combretastatin family member OXi4503 induces tumor vascular collapse through the induction of endothelial apoptosis. Int. J. Cancer 111, 604–610 (2004).

    CAS  Article  Google Scholar 

  29. 29.

    Chan, L. S., Malcontenti-Wilson, C., Muralidharan, V. & Christophi, C. Alterations in vascular architecture and permeability following OXi4503 treatment. Anti-Cancer Drugs 19, 17–22 (2008).

    CAS  Article  Google Scholar 

  30. 30.

    Salmon, H. W., Mladinich, C. & Siemann, D. W. Evaluations of vascular disrupting agents CA4P and OXi4503 in renal cell carcinoma (Caki-1) using a silicon based microvascular casting technique. Eur. J. Cancer 42, 3073–3078 2006).

    CAS  Article  Google Scholar 

  31. 31.

    Salmon, H. W. & Siemann, D. W. Effect of the second-generation vascular disrupting agent OXi4503 on tumor vascularity. Clin. Cancer Res. 12, 4090–4094 (2006).

    CAS  Article  Google Scholar 

  32. 32.

    Wankhede, M., Dedeugd, C., Siemann, D. W. & Sorg, B. S. In vivo functional differences in microvascular response of 4T1 and Caki-1 tumors after treatment with OXi4503. Oncol. Rep. 23, 685–692 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    El-Emir, E. et al. Tumour parameters affected by combretastatin A-4 phosphate therapy in a human colorectal xenograft model in nude mice. Eur. J. Cancer 41, 799–806 (2005).

    CAS  Article  Google Scholar 

  34. 34.

    Kirwan, I. G. et al. Comparative preclinical pharmacokinetic and metabolic studies of the combretastatin prodrugs combretastatin A4 phosphate and A1 phosphate. Clin. Cancer Res. 10, 1446–1453 (2004).

    CAS  Article  Google Scholar 

  35. 35.

    Byrne, H. M., Alarcon, T., Owen, M. R., Webb, S. D. & Maini, P. K. Modelling aspects of cancer dynamics: a review. Philos. Trans. A Math. Phys. Eng. Sci. 364, 1563–1578 2006).

    CAS  Article  Google Scholar 

  36. 36.

    Baxter, L. T. & Jain, R. K. Transport of fluid and macromolecules in tumors. I. Role of interstitial pressure and convection. Microvasc. Res. 37, 77–104 (1989).

    CAS  Article  Google Scholar 

  37. 37.

    Baxter, L. T. & Jain, R. K. Transport of fluid and macromolecules in tumors. II. Role of heterogeneous perfusion and lymphatics. Microvasc. Res. 40, 246–263 (1990).

    CAS  Article  Google Scholar 

  38. 38.

    Baxter, L. T. & Jain, R. K. Transport of fluid and macromolecules in tumors. III. Role of binding and metabolism. Microvasc. Res. 41, 5–23 (1991).

    CAS  Article  Google Scholar 

  39. 39.

    Altrock, P. M., Liu, L. L. & Michor, F. The mathematics of cancer: integrating quantitative models. Nat. Rev. Cancer 15, 730–745 (2015).

    CAS  Article  Google Scholar 

  40. 40.

    Beerenwinkel, N., Schwarz, R. F., Gerstung, M. & Markowetz, F. Cancer evolution: mathematical models and computational inference. Syst. Biol. 64, e1–e25 (2015).

    CAS  Article  Google Scholar 

  41. 41.

    Masoudi-Nejad, A. et al. Cancer systems biology and modeling: microscopic scale and multiscale approaches. Semin. Cancer Biol. 30, 60–69 (2015).

    CAS  Article  Google Scholar 

  42. 42.

    Boucher, Y., Baxter, L. T. & Jain, R. K. Interstitial pressure gradients in tissue-isolated and subcutaneous tumors: implications for therapy. Cancer Res. 50, 4478–4484 (1990).

    CAS  PubMed  Google Scholar 

  43. 43.

    Senthebane, D. A. et al. The role of tumor microenvironment in chemoresistance: to survive, keep your enemies closer. Int. J. Mol. Sci. 18, E1586 (2017).

    Article  Google Scholar 

  44. 44.

    Rubin, E. H. & Gilliland, D. G. Drug development and clinical trials—the path to an approved cancer drug. Nat. Rev. Clin. Oncol. 9, 215–222 (2012).

    CAS  Article  Google Scholar 

  45. 45.

    Jain, R. K. & Stylianopoulos, T. Delivering nanomedicine to solid tumors. Nat. Rev. Clin. Oncol. 7, 653–664 (2010).

    CAS  Article  Google Scholar 

  46. 46.

    Renier, N. et al. iDISCO: a simple, rapid method to immunolabel large tissue samples for volume imaging. Cell 159, 896–910 (2014).

    CAS  Article  Google Scholar 

  47. 47.

    Chung, K. et al. Structural and molecular interrogation of intact biological systems. Nature 497, 332–337 (2013).

    CAS  Article  Google Scholar 

  48. 48.

    Jain, R. K., Martin, J. D. & Stylianopoulos, T. The role of mechanical forces in tumor growth and therapy. Annu. Rev. Biomed. Eng. 16, 321–346 (2014).

    CAS  Article  Google Scholar 

  49. 49.

    Soltani, M. & Chen, P. Numerical modeling of interstitial fluid flow coupled with blood flow through a remodeled solid tumor microvascular network. PLoS ONE 8, e67025 (2013).

    CAS  Article  Google Scholar 

  50. 50.

    Sefidgar, M. et al. Numerical modeling of drug delivery in a dynamic solid tumor microvasculature. Microvasc. Res. 99, 43–56 (2015).

    CAS  Article  Google Scholar 

  51. 51.

    Mohammadi, M. & Chen, P. Effect of microvascular distribution and its density on interstitial fluid pressure in solid tumors: A computational model. Microvasc. Res. 101, 26–32 (2015).

    CAS  Article  Google Scholar 

  52. 52.

    Zhao, J., Salmon, H. & Sarntinoranont, M. Effect of heterogeneous vasculature on interstitial transport within a solid tumor. Microvasc. Res. 73, 224–236 (2007).

    CAS  Article  Google Scholar 

  53. 53.

    Baish, J. W. et al. Role of tumor vascular architecture in nutrient and drug delivery: an invasion percolation-based network model. Microvasc. Res. 51, 327–346 (1996).

    CAS  Article  Google Scholar 

  54. 54.

    Stamatelos, S. K., Kim, E., Pathak, A. P. & Popel, A. S. A bioimage informatics based reconstruction of breast tumor microvasculature with computational blood flow predictions. Microvasc. Res. 91, 8–21 (2014).

    Article  Google Scholar 

  55. 55.

    Boujelben, A. et al. Multimodality imaging and mathematical modelling of drug delivery to glioblastomas. Interface Focus 6, 20160039 (2016).

    Article  Google Scholar 

  56. 56.

    Thurber, G. M. et al. Single-cell and subcellular pharmacokinetic imaging allows insight into drug action in vivo. Nat. Commun. 4, 1504 (2013).

    Article  Google Scholar 

  57. 57.

    van de Ven, A. L. et al. Integrated intravital microscopy and mathematical modeling to optimize nanotherapeutics delivery to tumors. AIP Adv. 2, 011208 (2012).

    Article  Google Scholar 

  58. 58.

    Stéphanou, A., McDougall, S. R., Anderson, A. R. A. & Chaplain, M. A. J. Mathematical modelling of flow in 2D and 3D vascular networks: Applications to anti-angiogenic and chemotherapeutic drug strategies. Math. Comput. Model. 41, 1137–1156 (2005).

    Article  Google Scholar 

  59. 59.

    Sinek, J. P. et al. Predicting drug pharmacokinetics and effect in vascularized tumors using computer simulation. J. Math. Biol. 58, 485–510 (2008).

    Article  Google Scholar 

  60. 60.

    Steuperaert, M. et al. Mathematical modeling of intraperitoneal drug delivery: simulation of drug distribution in a single tumor nodule. Drug Deliv. 24, 491–501 (2017).

    CAS  Article  Google Scholar 

  61. 61.

    McDougall, S. R., Anderson, A. R. A., Chaplain, M. A. J. & Sherratt, J. A. Mathematical modelling of flow through vascular networks: Implications for tumour-induced angiogenesis and chemotherapy strategies. Bull. Math. Biol. 64, 673–702 (2002).

    CAS  Article  Google Scholar 

  62. 62.

    Mitchell, M. J., Jain, R. K. & Langer, R. Engineering and physical sciences in oncology: challenges and opportunities. Nat. Rev. Cancer 17, 659–675 (2017).

    CAS  Article  Google Scholar 

  63. 63.

    Baronzio, G., Parmar, G. & Baronzio, M. Overview of methods for overcoming hindrance to drug delivery to tumors, with special attention to tumor interstitial fluid. Front. Oncol. 8, 165 (2015).

    Google Scholar 

  64. 64.

    Olive, K. P. et al. Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science 324, 1457–1461 (2009).

    CAS  Article  Google Scholar 

  65. 65.

    Workman, P. et al. Guidelines for the welfare and use of animals in cancer research. Br. J. Cancer 102, 1555–1577 (2010).

    CAS  Article  Google Scholar 

  66. 66.

    Janssen, F. J. A study of the absorption and scattering factors of light in whole blood. Med. Biol. Eng. 10, 231–240 (1972).

    CAS  Article  Google Scholar 

  67. 67.

    Dodt, H. U. et al. Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain. Nat. Methods 4, 331–336 (2007).

    CAS  Article  Google Scholar 

  68. 68.

    Jonkman, J. E., Swoger, J., Kress, H., Rohrbach, A. & Stelzer, E. H. Resolution in optical microscopy. Methods Enzymol. 360, 416–446 (2003).

    CAS  Article  Google Scholar 

  69. 69.

    Pries, A. R. et al. Resistance to blood flow in microvessels in vivo. Circ. Res. 75, 904–915 (1994).

    CAS  Article  Google Scholar 

  70. 70.

    Pries, A. R., Secomb, T. W. & Gaehtgens, P. The endothelial surface layer. Pflugers Arch. 440, 653–666 (2000).

    CAS  Article  Google Scholar 

  71. 71.

    Pries, A. R. & Secomb, T. W. Microvascular blood viscosity in vivo and the endothelial surface layer. Am. J. Physiol. Heart Circ. Physiol. 289, H2657–H2664 (2005).

    CAS  Article  Google Scholar 

  72. 72.

    Fry, B. C., Lee, J., Smith, N. P. & Secomb, T. W. Estimation of blood flow rates in large microvascular networks. Microcirculation 19, 530–538 (2012).

    Article  Google Scholar 

  73. 73.

    Fry, B. C., Roy, T. K. & Secomb, T. W. Capillary recruitment in a theoretical model for blood flow regulation in heterogeneous microvessel networks. Physiol. Rep. 1, e00050 (2013).

    Article  Google Scholar 

  74. 74.

    Sweeney, P. W., Walker-Samuel, S. & Shipley, R. J. Insights into cerebral haemodynamics and oxygenation utilising in vivo mural cell imaging and mathematical modelling. Sci. Rep. 8, 1373 (2018).

    Article  Google Scholar 

  75. 75.

    Pries, A. R. et al. Structural adaptation and heterogeneity of normal and tumor microvascular networks. PLoS. Comput. Biol. 5, e1000394 (2009).

    Article  Google Scholar 

  76. 76.

    Morikawa, S. et al. Abnormalities in pericytes on blood vessels and endothelial sprouts in tumors. Am. J. Pathol. 160, 985–1000 (2002).

    Article  Google Scholar 

  77. 77.

    Stamatelos, S. K., Androulakis, I. P., Kong, A. N. & Georgopoulos, P. G. A semi-mechanistic integrated toxicokinetic-toxicodynamic (TK/TD) model for arsenic(iii) in hepatocytes. J. Theor. Biol. 317, 244–256 (2013).

    CAS  Article  Google Scholar 

  78. 78.

    Secomb, T. W., Hsu, R., Park, E. Y. & Dewhirst, M. W. Green’s function methods for analysis of oxygen delivery to tissue by microvascular networks. Ann. Biomed. Eng. 32, 1519–1529 (2004).

    Article  Google Scholar 

  79. 79.

    Xu, X., Chen, A., Jansuwan, S., Heaslip, K. & Yang, C. Modeling transportation network redundancy. Transport. Res. Procedia 9, 283–302 (2015).

    Article  Google Scholar 

  80. 80.

    Schabel, M. C. & Parker, D. L. Uncertainty and bias in contrast concentration measurements using spoiled gradient echo pulse sequences. Phys. Med. Biol. 53, 2345–2373 (2008).

    Article  Google Scholar 

  81. 81.

    Ramasawmy, R. et al. Hepatic arterial spin labelling MRI: an initial evaluation in mice. NMR Biomed. 28, 272–280 (2015).

    CAS  Article  Google Scholar 

Download references


The authors acknowledge support received for the Kings College London & UCL CR-UK and EPSRC Comprehensive Cancer Imaging Centre, in association with the MRC and Department of Health (England) (C1519/A10331), Wellcome Trust (WT100247MA) and Rosetrees Trust/Stoneygate Trust (M135-F1 and M601). The authors thank OXiGENE for supplying OXi4503.

Author information




A.d’E. designed and performed optical imaging experiments, analysed and interpreted results and wrote the first drafts of the manuscript. P.W.S. and R.S. developed software to perform mathematical and computational analysis. P.W.S. analysed and interpreted data and wrote and edited the paper. M.A. performed a subset of the optical imaging experiments. M.S. and S.W.-S. developed software for performing time-dependent simulations. R.R. and T.A.R. designed and performed ASL-MRI measurements, and developed software for quantifying the data. G.A. provided murine brain tumour models. A.D. assisted with student supervision and with the design of optical imaging experiments. M.F.L. provided access to imaging resources and student supervision. R.B.P. provided murine xenograft models and interpreted results. S.W.-S. developed software for segmenting optical imaging data. R.S. and S.W.-S. co-led the project, secured funding, supervised the design of experiments and simulations, developed the main concepts, interpreted results and contributed to the writing and editing of the manuscript.

Corresponding authors

Correspondence to Rebecca Shipley or Simon Walker-Samuel.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Information

Supplementary Figures 1–8, Supplementary Tables 1–3, Supplementary Results, Supplementary References 1–4 and Supplementary Video Captions 1–4.

Reporting Summary

Supplementary Video 1

Three-dimensional rendering of REANIMATE simulation results, describing the passage of a bolus of the commonly used MRI contrast agent Gd‐DTPA through tumour vasculature.

Supplementary Video 2

REANIMATE simulation of the delivery of the MRI contrast agent Gd‐DTPA using the vascular network from the LS174T colorectal tumour-xenograft model.

Supplementary Video 3

Dual-fluorescence labelling of the vasculature in an LS174T colorectal xenograft model, following treatment with the vascular targeting agent OXi4503.

Supplementary Video 4

REANIMATE simulation of the delivery of the vascular targeting agent OXi4503 to an LS174T colorectal xenograft model.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

d’Esposito, A., Sweeney, P.W., Ali, M. et al. Computational fluid dynamics with imaging of cleared tissue and of in vivo perfusion predicts drug uptake and treatment responses in tumours. Nat Biomed Eng 2, 773–787 (2018).

Download citation

Further reading