Laboratory studies of the heart use cell and tissue cultures to dissect heart function yet rely on animal models to measure pressure and volume dynamics. Here, we report tissue-engineered scale models of the human left ventricle, made of nanofibrous scaffolds that promote native-like anisotropic myocardial tissue genesis and chamber-level contractile function. Incorporating neonatal rat ventricular myocytes or cardiomyocytes derived from human induced pluripotent stem cells, the tissue-engineered ventricles have a diastolic chamber volume of ~500 µl (comparable to that of the native rat ventricle and approximately 1/250 the size of the human ventricle), and ejection fractions and contractile work 50–250 times smaller and 104–108 times smaller than the corresponding values for rodent and human ventricles, respectively. We also measured tissue coverage and alignment, calcium-transient propagation and pressure–volume loops in the presence or absence of test compounds. Moreover, we describe an instrumented bioreactor with ventricular-assist capabilities, and provide a proof-of-concept disease model of structural arrhythmia. The model ventricles can be evaluated with the same assays used in animal models and in clinical settings.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Change history

  • 27 July 2018

    In the version of this Article originally published, the links to Supplementary Videos 1–15 went to the wrong files; the links have now been corrected.


  1. 1.

    Benam, K. H. et al. Engineered in vitro disease models. Annu Rev. Pathol. 10, 195–262 (2015).

  2. 2.

    Tzatzalos, E., Abilez, O. J., Shukla, P. & Wu, J. C. Engineered heart tissues and induced pluripotent stem cells: macro- and microstructures for disease modeling, drug screening, and translational studies. Adv. Drug Deliv. Rev. 96, 234–244 (2016).

  3. 3.

    Pacher, P., Nagayama, T., Mukhopadhyay, P., Batkai, S. & Kass, D. A. Measurement of cardiac function using pressure–volume conductance catheter technique in mice and rats. Nat. Protoc. 3, 1422–1434 (2008).

  4. 4.

    Ram, R., Mickelsen, D. M., Theodoropoulos, C. & Blaxall, B. C. New approaches in small animal echocardiography: imaging the sounds of silence. Am. J. Physiol. Heart Circ. Physiol. 301, H1765–1780 (2011).

  5. 5.

    Bakermans, A. J. et al. Small animal cardiovascular MR imaging and spectroscopy. Prog. Nucl. Magn. Reson. Spectrosc. 88–89, 1–47 (2015).

  6. 6.

    Chandrasekera, P. C. & Pippin, J. J. The human subject: an integrative animal model for 21st century heart failure research. Am. J. Transl. Res. 7, 1636–1647 (2015).

  7. 7.

    Gloschat, C. R. et al. Arrhythmogenic and metabolic remodelling of failing human heart. J. Physiol. 594, 3963–3980 (2016).

  8. 8.

    Karakikes, I., Ameen, M., Termglinchan, V. & Wu, J. C. Human induced pluripotent stem cell-derived cardiomyocytes: insights into molecular, cellular, and functional phenotypes. Circ. Res. 117, 80–88 (2015).

  9. 9.

    Feric, N. T. & Radisic, M. Maturing human pluripotent stem cell-derived cardiomyocytes in human engineered cardiac tissues. Adv. Drug Deliv. Rev. 96, 110–134 (2016).

  10. 10.

    Eder, A., Vollert, I., Hansen, A. & Eschenhagen, T. Human engineered heart tissue as a model system for drug testing. Adv. Drug Deliv. Rev. 96, 214–224 (2016).

  11. 11.

    Wang, G. et al. Modeling the mitochondrial cardiomyopathy of Barth syndrome with induced pluripotent stem cell and heart-on-chip technologies. Nat. Med. 20, 616–623 (2014).

  12. 12.

    Lind, J. U. et al. Instrumented cardiac microphysiological devices via multimaterial three-dimensional printing. Nat. Mater. 16, 303–308 (2017).

  13. 13.

    Boudou, T. et al. A microfabricated platform to measure and manipulate the mechanics of engineered cardiac microtissues. Tissue Eng. Part A 18, 910–919 (2012).

  14. 14.

    Nunes, S. S. et al. Biowire: a platform for maturation of human pluripotent stem cell-derived cardiomyocytes. Nat. Methods 10, 781–787 (2013).

  15. 15.

    Thavandiran, N. et al. Design and formulation of functional pluripotent stem cell-derived cardiac microtissues. Proc. Natl Acad. Sci. USA 110, E4698–4707 (2013).

  16. 16.

    Mannhardt, I. et al. Human engineered heart tissue: analysis of contractile force. Stem Cell Rep. 7, 29–42 (2016).

  17. 17.

    Huebsch, N. et al. Miniaturized iPS-cell-derived cardiac muscles for physiologically relevant drug response analyses. Sci. Rep. 6, 24726 (2016).

  18. 18.

    Mathur, A. et al. Human iPSC-based cardiac microphysiological system for drug screening applications. Sci. Rep. 5, 8883 (2015).

  19. 19.

    Turnbull, I. C. et al. Advancing functional engineered cardiac tissues toward a preclinical model of human myocardium. FASEB J. 28, 644–654 (2014).

  20. 20.

    Sidorov, V. Y. et al. I-Wire Heart-on-a-Chip I: three-dimensional cardiac tissue constructs for physiology and pharmacology. Acta Biomater. 48, 68–78 (2017).

  21. 21.

    Godier-Furnemont, A. F. G. et al. Physiologic force–frequency response in engineered heart muscle by electromechanical stimulation. Biomaterials 60, 82–91 (2015).

  22. 22.

    Tiburcy, M. et al. Defined engineered human myocardium with advanced maturation for applications in heart failure modelling and repair. Circulation 135, 1832–1847 (2017).

  23. 23.

    Mathur, A., Ma, Z., Loskill, P., Jeeawoody, S. & Healy, K. E. In vitro cardiac tissue models: current status and future prospects. Adv. Drug Deliv. Rev. 96, 203–213 (2016).

  24. 24.

    Pacher, P., Nagayama, T., Mukhopadhyay, P., Batkai, S. & Kass, D. A. Measurement of cardiac function using pressure–volume conductance catheter technique in mice and rats. Nat. Protoc. 3, 1422–1434 (2008).

  25. 25.

    Burkhoff, D., Mirsky, I. & Suga, H. Assessment of systolic and diastolic ventricular properties via pressure–volume analysis: a guide for clinical, translational, and basic researchers. Am. J. Physiol. Heart Circ. Physiol. 289, H501–512 (2005).

  26. 26.

    Lee, E. J., Kim do, E., Azeloglu, E. U. & Costa, K. D. Engineered cardiac organoid chambers: toward a functional biological model ventricle. Tissue Eng. Part A 14, 215–225 (2008).

  27. 27.

    Gonen-Wadmany, M., Gepstein, L. & Seliktar, D. Controlling the cellular organization of tissue-engineered cardiac constructs. Ann. N. Y. Acad. Sci. 1015, 299–311 (2004).

  28. 28.

    Yildirim, Y. et al. Development of a biological ventricular assist device: preliminary data from a small animal model. Circulation 116, I-16–I-23 (2007).

  29. 29.

    Li, R. A. et al. Bioengineering an electro-mechanically functional miniature ventricular heart chamber from human pluripotent stem cells. Biomaterials 163, 116–127 (2018).

  30. 30.

    Costa, K. D., Takayama, Y., McCulloch, A. D. & Covell, J. W. Laminar fiber architecture and three-dimensional systolic mechanics in canine ventricular myocardium. Am. J. Physiol. 276, H595–607 (1999).

  31. 31.

    Arts, T., Costa, K. D., Covell, J. W. & McCulloch, A. D. Relating myocardial laminar architecture to shear strain and muscle fiber orientation. Am. J. Physiol. Heart Circ. Physiol. 280, H2222–2229 (2001).

  32. 32.

    Rohr, S., Scholly, D. M. & Kleber, A. G. Patterned growth of neonatal rat heart cells in culture. Morphological and electrophysiological characterization. Circ. Res. 68, 114–130 (1991).

  33. 33.

    Kleber, A. G. & Rudy, Y. Basic mechanisms of cardiac impulse propagation and associated arrhythmias. Physiol. Rev. 84, 431–488 (2004).

  34. 34.

    Bursac, N., Parker, K. K., Iravanian, S. & Tung, L. Cardiomyocyte cultures with controlled macroscopic anisotropy: a model for functional electrophysiological studies of cardiac muscle. Circ. Res. 91, e45–54 (2002).

  35. 35.

    Feinberg, A. W. et al. Controlling the contractile strength of engineered cardiac muscle by hierarchal tissue architecture. Biomaterials 33, 5732–5741 (2012).

  36. 36.

    Zong, X. et al. Electrospun fine-textured scaffolds for heart tissue constructs. Biomaterials 26, 5330–5338 (2005).

  37. 37.

    Kai, D., Prabhakaran, M. P., Jin, G. & Ramakrishna, S. Guided orientation of cardiomyocytes on electrospun aligned nanofibers for cardiac tissue engineering. J. Biomed. Mater. Res B Appl. Biomater. 98, 379–386 (2011).

  38. 38.

    Kenar, H., Kose, G. T., Toner, M., Kaplan, D. L. & Hasirci, V. A 3D aligned microfibrous myocardial tissue construct cultured under transient perfusion. Biomaterials 32, 5320–5329 (2011).

  39. 39.

    Orlova, Y., Magome, N., Liu, L., Chen, Y. & Agladze, K. Electrospun nanofibers as a tool for architecture control in engineered cardiac tissue. Biomaterials 32, 5615–5624 (2011).

  40. 40.

    Capulli, A. K., MacQueen, L. A., Sheehy, S. P. & Parker, K. K. Fibrous scaffolds for building hearts and heart parts. Adv. Drug Deliv. Rev. 96, 83–102 (2016).

  41. 41.

    Mauck, R. L. et al. Engineering on the straight and narrow: the mechanics of nanofibrous assemblies for fiber-reinforced tissue regeneration. Tissue Eng. Part B 15, 171–193 (2009).

  42. 42.

    Pope, A. J., Sands, G. B., Smaill, B. H. & LeGrice, I. J. Three-dimensional transmural organization of perimysial collagen in the heart. Am. J. Physiol. Heart C 295, 1243–1252 (2008).

  43. 43.

    Sheehy, S. P., Grosberg, A. & Parker, K. K. The contribution of cellular mechanotransduction to cardiomyocyte form and function. Biomech. Model. Mechanobiol. 11, 1227–1239 (2012).

  44. 44.

    Kim, D. H. et al. Nanoscale cues regulate the structure and function of macroscopic cardiac tissue constructs. Proc. Natl Acad. Sci. USA 107, 565–570 (2010).

  45. 45.

    Savadjiev, P. et al. Heart wall myofibers are arranged in minimal surfaces to optimize organ function. Proc. Natl Acad. Sci. USA 109, 9248–9253 (2012).

  46. 46.

    Deravi, L. F. et al. Design and fabrication of fibrous nanomaterials using pull spinning. Macromol. Mater. Eng. 302, 1600404 (2017).

  47. 47.

    Ruoslahti, E. RGD and other recognition sequences for integrins. Annu Rev. Cell Dev. Biol. 12, 697–715 (1996).

  48. 48.

    Katagiri, Y., Brew, S. A. & Ingham, K. C. All six modules of the gelatin-binding domain of fibronectin are required for full affinity. J. Biol. Chem. 278, 11897–11902 (2003).

  49. 49.

    Meiry, G. et al. Evolution of action potential propagation and repolarization in cultured neonatal rat ventricular myocytes. J. Cardiovasc. Electrophysiol. 12, 1269–1277 (2001).

  50. 50.

    Morse, P. M. & Feshbach, H. Methods of Theoretical Physics (McGraw-Hill, New York, 1953).

  51. 51.

    Mandegar, M. A. et al. CRISPR interference efficiently induces specific and reversible gene silencing in human iPSCs. Cell Stem Cell 18, 541–553 (2016).

  52. 52.

    Rohr, S., Kucera, J. P. & Kleber, A. G. Slow conduction in cardiac tissue, I: effects of a reduction of excitability versus a reduction of electrical coupling on microconduction. Circ. Res 83, 781–794 (1998).

  53. 53.

    Yang, X. L., Pabon, L. & Murry, C. E. Engineering adolescence maturation of human pluripotent stem cell-derived cardiomyocytes. Circ. Res. 114, 511–523 (2014).

  54. 54.

    Pasqualini, F. S., Sheehy, S. P., Agarwal, A., Aratyn-Schaus, Y. & Parker, K. K. Structural phenotyping of stem cell-derived cardiomyocytes. Stem Cell Rep. 4, 340–347 (2015).

  55. 55.

    Akselrod, S. et al. Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular control. Science 213, 220–222 (1981).

  56. 56.

    Fenske, S. et al. Comprehensive multilevel in vivo and in vitro analysis of heart rate fluctuations in mice by ECG telemetry and electrophysiology. Nat. Protoc. 11, 61–86 (2016).

  57. 57.

    Barrett, A. M. & Carter, J. Comparative chronotropic activity of beta-adrenoceptive antagonists. Br. J. Pharmacol. 40, 373–381 (1970).

  58. 58.

    Brito-Martins, M., Harding, S. E. & Ali, N. N. Beta(1)- and beta(2)-adrenoceptor responses in cardiomyocytes derived from human embryonic stem cells: comparison with failing and non-failing adult human heart. Br. J. Pharmacol. 153, 751–759 (2008).

  59. 59.

    Simpson, P. & Savion, S. Differentiation of rat myocytes in single cell cultures with and without proliferating nonmyocardial cells. Cross-striations, ultrastructure, and chronotropic response to isoproterenol. Circ. Res. 50, 101–116 (1982).

  60. 60.

    Moretti, A. et al. Patient-specific induced pluripotent stem-cell models for long-QT syndrome. N. Engl. J. Med. 363, 1397–1409 (2010).

  61. 61.

    Koglin, J., Bohm, M., Vonscheidt, W., Stablein, A. & Erdmann, E. Antiadrenergic effect of carbachol but not of adenosine on contractility in the intact human ventricle in-vivo. J. Am. Coll. Cardiol. 23, 678–683 (1994).

  62. 62.

    Lim, Z. Y., Maskara, B., Aguel, F., Emokpae, R.Jr & Tung, L. Spiral wave attachment to millimeter-sized obstacles. Circulation 114, 2113–2121 (2006).

  63. 63.

    Ogle, B. M. et al. Distilling complexity to advance cardiac tissue engineering. Sci. Transl. Med. 8, 342ps313 (2016).

  64. 64.

    Feinberg, A. W. et al. Muscular thin films for building actuators and powering devices. Science 317, 1366–1370 (2007).

  65. 65.

    Novosel, E. C., Kleinhans, C. & Kluger, P. J. Vascularization is the key challenge in tissue engineering. Adv. Drug Deliv. Rev. 63, 300–311 (2011).

  66. 66.

    Lundberg, M. S., Baldwin, J. T. & Buxton, D. B. Building a bioartificial heart: obstacles and opportunities. J. Thorac. Cardiovasc. Surg. 153, 748–750 (2017).

  67. 67.

    Chaturvedi, R. R. et al. Passive stiffness of myocardium from congenital heart disease and implications for diastole. Circulation 121, 979–988 (2010).

  68. 68.

    Quinn, K. P. et al. Optical metrics of the extracellular matrix predict compositional and mechanical changes after myocardial infarction. Sci. Rep. 6, 35823 (2016).

  69. 69.

    Gonzalez, G. M. et al. Production of synthetic, para-aramid and biopolymer nanofibers by immersion rotary jet-spinning. Macromol. Mater. Eng. 302, 1600365 (2017).

  70. 70.

    Gladman, A. S., Matsumoto, E. A., Nuzzo, R. G., Mahadevan, L. & Lewis, J. A. Biomimetic 4D printing. Nat. Mater. 15, 413–418 (2016).

  71. 71.

    Zimmermann, W. H. et al. Three-dimensional engineered heart tissue from neonatal rat cardiac myocytes. Biotechnol. Bioeng. 68, 106–114 (2000).

  72. 72.

    Germanguz, I. et al. Molecular characterization and functional properties of cardiomyocytes derived from human inducible pluripotent stem cells. J. Cell Mol. Med. 15, 38–51 (2011).

  73. 73.

    Ronaldson-Bouchard, K. et al. Advanced maturation of human cardiac tissue grown from pluripotent stem cells. Nature 556, 239–243 (2018).

  74. 74.

    Endoh, M. Force–frequency relationship in intact mammalian ventricular myocardium: physiological and pathophysiological relevance. Eur. J. Pharmacol. 500, 73–86 (2004).

  75. 75.

    Bai, S. L., Campbell, S. E., Moore, J. A., Morales, M. C. & Gerdes, A. M. Influence of age, growth, and sex on cardiac myocyte size and number in rats. Anat. Rec. 226, 207–212 (1990).

  76. 76.

    Feric, N. T. & Radisic, M. Strategies and challenges to myocardial replacement therapy. Stem Cells Transl. Med. 5, 410–416 (2016).

  77. 77.

    Pecha, S., Eschenhagen, T. & Reichenspurner, H. Myocardial tissue engineering for cardiac repair. J. Heart Lung Transplant. 35, 294–298 (2016).

  78. 78.

    Klabunde, R. E. Cardiovascular Physiology Concepts 2nd edn (Lippincott Williams & Wilkins/Wolters Kluwer, Philadelphia, 2012).

  79. 79.

    Park, S. J. et al. Phototactic guidance of a tissue-engineered soft-robotic ray. Science 353, 158–162 (2016).

  80. 80.

    Guyette, J. P. et al. Bioengineering human myocardium on native extracellular matrix. Circ. Res. 118, 56–72 (2016).

  81. 81.

    Laughner, J. I., Ng, F. S., Sulkin, M. S., Arthur, R. M. & Efimov, I. R. Processing and analysis of cardiac optical mapping data obtained with potentiometric dyes. Am. J. Physiol. Heart C 303, H753–H765 (2012).

  82. 82.

    Pearce, J. A., Porterfield, J. E., Larson, E. R., Valvano, J. W. & Feldman, M. D. Accuracy considerations in catheter based estimation of left ventricular volume. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2010, 3556–3558 (2010).

  83. 83.

    Baan, J. et al. Continuous stroke volume and cardiac output from intra-ventricular dimensions obtained with impedance catheter. Cardiovasc. Res. 15, 328–334 (1981).

  84. 84.

    Baan, J. et al. Continuous measurement of left ventricular volume in animals and humans by conductance catheter. Circulation 70, 812–823 (1984).

  85. 85.

    Raghavan, K. et al. Electrical conductivity and permittivity of murine myocardium. IEEE Trans. Biomed. Eng. 56, 2044–2053 (2009).

  86. 86.

    Clark, J. E. & Marber, M. S. Advancements in pressure–volume catheter technology—stress remodelling after infarction. Exp. Physiol. 98, 614–621 (2013).

Download references


This work was sponsored by the John A. Paulson School of Engineering and Applied Sciences at Harvard University, the Wyss Institute for Biologically Inspired Engineering at Harvard University, Harvard Materials Research Science and Engineering Center grant DMR-1420570, Defense Threat Reduction Agency (DTRA) subcontract #312659 from Los Alamos National Laboratory under a prime DTRA contract no. DE-AC52-06NA25396, and the National Center for Advancing Translational Sciences of the National Institutes of Health under Award Numbers UH3TR000522 and 1-UG3-HL-141798-01. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. This work was supported in part by the US Army Research Laboratory and the US Army Research Office under Contract No. W911NF-12-2-0036. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the Army Research Office, Army Research Laboratory, or the US government. The US government is authorized to reproduce and distribute reprints for government purposes notwithstanding any copyright notation hereon. This work was performed in part at the Center for Nanoscale Systems (CNS), a member of the National Nanotechnology Coordinated Infrastructure Network (NNCI), which is supported by the National Science Foundation under NSF award no. 1541959. CNS is part of Harvard University. We thank M. McKenna and the staff at Harvard University’s John A. Paulson School of Engineering and Applied Sciences Scientific Instrument Shop for manufacturing heart bioreactor and nanofibre production system components. We thank M. Griswold and A. Cho for technical assistance, J. Guyette and H. Ott for providing decellularized human left ventricle myocardial tissue samples, E. Snay for assistance with echocardiographic imaging at the Boston Children’s Hospital Small Animal Imaging Laboratory, and M. Rosnach for assistance with photography and illustrations. We thank A. Kleber for his expertise and insightful discussions.

Author information


  1. Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA

    • Luke A. MacQueen
    • , Sean P. Sheehy
    • , Christophe O. Chantre
    • , John F. Zimmerman
    • , Francesco S. Pasqualini
    • , Josue A. Goss
    • , Patrick H. Campbell
    • , Grant M. Gonzalez
    • , Sung-Jin Park
    • , Andrew K. Capulli
    • , John P. Ferrier
    • , T. Fettah Kosar
    • , L. Mahadevan
    •  & Kevin Kit Parker
  2. John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA

    • Luke A. MacQueen
    • , Sean P. Sheehy
    • , Christophe O. Chantre
    • , John F. Zimmerman
    • , Francesco S. Pasqualini
    • , Josue A. Goss
    • , Patrick H. Campbell
    • , Grant M. Gonzalez
    • , Sung-Jin Park
    • , Andrew K. Capulli
    • , John P. Ferrier
    • , L. Mahadevan
    •  & Kevin Kit Parker
  3. Department of Cardiology, Boston Children’s Hospital, Boston, MA, USA

    • Xujie Liu
    •  & William T. Pu
  4. Kavli Institute for Bionano Science and Technology, Harvard University, Cambridge, MA, USA

    • L. Mahadevan
  5. Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA

    • L. Mahadevan
  6. Department of Physics, Harvard University, Cambridge, MA, USA

    • L. Mahadevan
  7. Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA

    • William T. Pu
    •  & Kevin Kit Parker


  1. Search for Luke A. MacQueen in:

  2. Search for Sean P. Sheehy in:

  3. Search for Christophe O. Chantre in:

  4. Search for John F. Zimmerman in:

  5. Search for Francesco S. Pasqualini in:

  6. Search for Xujie Liu in:

  7. Search for Josue A. Goss in:

  8. Search for Patrick H. Campbell in:

  9. Search for Grant M. Gonzalez in:

  10. Search for Sung-Jin Park in:

  11. Search for Andrew K. Capulli in:

  12. Search for John P. Ferrier in:

  13. Search for T. Fettah Kosar in:

  14. Search for L. Mahadevan in:

  15. Search for William T. Pu in:

  16. Search for Kevin Kit Parker in:


L.A.M. and K.K.P. conceived the ideas and designed the experiments. L.A.M., S.P.S., C.O.C., J.F.Z., F.S.P., X.L., J.A.G., P.H.C., G.M.G., S.-J.P., A.K.C., J.P.F. and T.F.K conducted the experiments and analysed the data. L.M. derived the scaling laws. L.A.M., W.T.P. and K.K.P interpreted the data. L.A.M., S.P.S. and K.K.P. wrote the manuscript.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Kevin Kit Parker.

Supplementary information

  1. Supplementary Information

    Supplementary figures and video captions.

  2. Reporting Summary

  3. Supplementary Video 1

    Pull-spinning a nanofibrous ventricle scaffold.

  4. Supplementary Video 2

    Microcomputed-tomography reconstruction of a nanofibrous ventricle scaffold.

  5. Supplementary Video 3

    Spontaneous contraction of a plated neonatal rat ventricular myocyte tissue-engineered ventricle.

  6. Supplementary Video 4

    Magnified views of spontaneously contracting tissue-engineered ventricles.

  7. Supplementary Video 5

    Spontaneously contracting, sutured and catheterized neonatal rat ventricular myocyte tissue-engineered ventricle.

  8. Supplementary Video 6

    Calcium propagation on a neonatal rat ventricular myocyte tissue-engineered ventricle.

  9. Supplementary Video 7

    Calcium propagation on a human-induced-pluripotent-stem-cell-derived cardiomyocyte tissue-engineered ventricle surface.

  10. Supplementary Video 8

    Immunostained human-induced-pluripotent-stem-cell-derived cardiomyocytes in a polycaprolactone–gelatin nanofibre ventricle scaffold.

  11. Supplementary Video 9

    Heart bioreactor computer-aided-design drawings.

  12. Supplementary Video 10

    Echocardiographic imaging of a spontaneously beating neonatal rat ventricular myocyte tissue-engineered ventricle.

  13. Supplementary Video 11

    Echocardiographic imaging of a ventricle scaffold for which contraction was driven by the heart bioreactor.

  14. Supplementary Video 12

    Calcium propagation on a neonatal-rat-ventricular-myocyte tissue-engineered ventricle before and after injury with a 1-mm-diameter biopsy punch.

  15. Supplementary Video 13

    Calcium propagation on a neonatal-rat-ventricular-myocyte tissue-engineered ventricle following injury with a 1-mm-diameter biopsy punch.

  16. Supplementary Video 14

    Contraction of neonatal-rat-ventricular-myocyte tissues following 40 days of culture in polycaprolactone–gelatin nanofibrous sheets.

  17. Supplementary Video 15

    Membrane staining of neonatal-rat-ventricular-myocyte tissues following 45 days of culture in polycaprolactone–gelatin nanofibrous sheets.

About this article

Publication history