Article | Published:

Acoustically targeted chemogenetics for the non-invasive control of neural circuits

Nature Biomedical Engineeringvolume 2pages475484 (2018) | Download Citation

Abstract

Neurological and psychiatric disorders are often characterized by dysfunctional neural circuits in specific regions of the brain. Existing treatment strategies, including the use of drugs and implantable brain stimulators, aim to modulate the activity of these circuits. However, they are not cell-type-specific, lack spatial targeting or require invasive procedures. Here, we report a cell-type-specific and non-invasive approach based on acoustically targeted chemogenetics that enables the modulation of neural circuits with spatiotemporal specificity. The approach uses ultrasound waves to transiently open the blood–brain barrier and transduce neurons at specific locations in the brain with virally encoded engineered G-protein-coupled receptors. The engineered neurons subsequently respond to systemically administered designer compounds to activate or inhibit their activity. In a mouse model of memory formation, the approach can modify and subsequently activate or inhibit excitatory neurons within the hippocampus, with selective control over individual brain regions. This technology overcomes some of the key limitations associated with conventional brain therapies.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from $8.99

All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Hirtz, D. et al. How common are the ‘common’ neurologic disorders? Neurology 68, 326–337 (2007).

  2. 2.

    Pangalos, M. N., Schechter, L. E. & Hurko, O. Drug development for CNS disorders: strategies for balancing risk and reducing attrition. Nat. Rev. Drug Discov. 6, 521–532 (2007).

  3. 3.

    The Numbers Count: Mental Disorders in America (National Institutes of Health, 2013).

  4. 4.

    Sakurai, T. The role of orexin in motivated behaviours. Nat. Rev. Neurosci. 15, 719–731 (2014).

  5. 5.

    Russo, S. J. & Nestler, E. J. The brain reward circuitry in mood disorders. Nat. Rev. Neurosci. 14, 609–625 (2013).

  6. 6.

    Apkarian, A. V., Hashmi, J. A. & Baliki, M. N. Pain and the brain: specificity and plasticity of the brain in clinical chronic pain. Pain 152, S49–S64 (2011).

  7. 7.

    Shin, L. M. & Liberzon, I. The neurocircuitry of fear, stress, and anxiety disorders. Neuropsychopharmacology 35, 169–191 (2009).

  8. 8.

    Koob, G. F. & Volkow, N. D. Neurocircuitry of addiction. Neuropsychopharmacology 35, 217–238 (2009).

  9. 9.

    Burnett, C. J. & Krashes, M. J. Resolving behavioral output via chemogenetic designer receptors exclusively activated by designer drugs. J. Neurosci. 36, 9268–9282 (2016).

  10. 10.

    Carpentier, A. et al. Clinical trial of blood–brain barrier disruption by pulsed ultrasound. Sci. Transl. Med. 8, 343re2 (2016).

  11. 11.

    Elias, W. J. et al. A randomized trial of focused ultrasound thalamotomy for essential tremor. New Engl. J. Med. 375, 730–739 (2016).

  12. 12.

    Dobrakowski, P. P. et al. MR-guided focused ultrasound: a new generation treatment of Parkinson’s disease, essential tremor and neuropathic pain. Interv. Neuroradiol. 20, 275–282 (2014).

  13. 13.

    Hynynen, K., McDannold, N., Vykhodtseva, N. & Jolesz, F. A. Noninvasive MR imaging-guided focal opening of the blood–brain barrier in rabbits. Radiology 220, 640–646 (2001).

  14. 14.

    Tung, Y. S., Vlachos, F., Feshitan, J. A., Borden, M. A. & Konofagou, E. E. The mechanism of interaction between focused ultrasound and microbubbles in blood–brain barrier opening in mice. J. Acoust. Soc. Am. 130, 3059–3067 (2011).

  15. 15.

    Samiotaki, G., Acosta, C., Wang, S. & Konofagou, E. E. Enhanced delivery and bioactivity of the neurturin neurotrophic factor through focused ultrasound-mediated blood–brain barrier opening in vivo. J. Cereb. Blood Flow Metab. 35, 611–622 (2015).

  16. 16.

    O’Reilly, M. A. & Hynynen, K. Ultrasound enhanced drug delivery to the brain and central nervous system. Int. J. Hyperth. 28, 386–396 (2012).

  17. 17.

    Thevenot, E. et al. Targeted delivery of self-complementary adeno-associated virus serotype 9 to the brain, using magnetic resonance imaging-guided focused ultrasound. Human Gene Ther. 23, 1144–1155 (2012).

  18. 18.

    Wang, S., Olumolade, O. O., Sun, T., Samiotaki, G. & Konofagou, E. E. Non-invasive, neuron-specific gene therapy can be facilitated by focused ultrasound and recombinant adeno-associated virus. Gene Ther. 22, 104–110 (2015).

  19. 19.

    Nance, E. et al. Non-invasive delivery of stealth, brain-penetrating nanoparticles across the blood–brain barrier using MRI-guided focused ultrasound. J. Control. Release 189, 123–132 (2014).

  20. 20.

    Clement, G. T. & Hynynen, K. A non-invasive method for focusing ultrasound through the human skull. Phys. Med. Biol. 47, 1219–1236 (2002).

  21. 21.

    Hsu, P. H. et al. Noninvasive and targeted gene delivery into the brain using microbubble-facilitated focused ultrasound. PLoS ONE 8, e57682 (2013).

  22. 22.

    Treat, L. H. et al. Targeted delivery of doxorubicin to the rat brain at therapeutic levels using MRI-guided focused ultrasound. Int. J. Cancer 121, 901–907 (2007).

  23. 23.

    Choi, J. J., Pernot, M., Small, S. A. & Konofagou, E. E. Noninvasive, transcranial and localized opening of the blood–brain barrier using focused ultrasound in mice. Ultrasound Med. Biol. 33, 95–104 (2007).

  24. 24.

    Ginn, S. L., Alexander, I. E., Edelstein, M. L., Abedi, M. R. & Wixon, J. Gene therapy clinical trials worldwide to 2012—an update. J. Gene Med. 15, 65–77 (2013).

  25. 25.

    Mendell, J. R. et al. Single-dose gene-replacement therapy for spinal muscular atrophy. New Engl. J. Med. 377, 1713–1722 (2017).

  26. 26.

    Rangarajan, S. et al. AAV5–factor VIII gene transfer in severe hemophilia A. New Engl. J. Med. 377, 2519–2530 (2017).

  27. 27.

    Bender, E. Gene therapy: industrial strength. Nature 537, S57–S59 (2016).

  28. 28.

    Kotterman, M. A., Chalberg, T. W. & Schaffer, D. V. Viral vectors for gene therapy: translational and clinical outlook. Annu. Rev. Biomed. Eng. 17, 63–89 (2015).

  29. 29.

    Luo, L., Callaway, E. M. & Svoboda, K. Genetic dissection of neural circuits. Neuron 57, 634–660 (2008).

  30. 30.

    Alonso, A. et al. Focal delivery of AAV2/1-transgenes into the rat brain by localized ultrasound-induced BBB opening. Mol. Ther. Nucleic Acids 2, e73 (2013).

  31. 31.

    Sternson, S. M. & Roth, B. L. Chemogenetic tools to interrogate brain functions. Annu. Rev. Neurosci. 37, 387–407 (2014).

  32. 32.

    Shapiro, M. G., Frazier, S. J. & Lester, H. A. Unparalleled control of neural activity using orthogonal pharmacogenetics. ACS Chem. Neurosci. 3, 619–629 (2012).

  33. 33.

    English, J. G. & Roth, B. L. Chemogenetics—a transformational and translational platform. JAMA Neurol. 72, 1361–1366 (2015).

  34. 34.

    Smith, K. S., Bucci, D. J., Luikart, B. W. & Mahler, S. V. DREADDs: use and application in behavioral neuroscience. Behav. Neurosci. 130, 137–155 (2016).

  35. 35.

    Armbruster, B. N., Li, X., Pausch, M. H., Herlitze, S. & Roth, B. L. Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand. Proc. Natl Acad. Sci. USA 104, 5163–5168 (2007).

  36. 36.

    Andersen, P. et al. (eds) The Hippocampus Book (Oxford Univ. Press, Oxford, 2007).

  37. 37.

    Castle, M. J., Turunen, H. T., Vandenberghe, L. H. & Wolfe, J. H. Controlling AAV tropism in the nervous system with natural and engineered capsids. Methods Mol. Biol. 1382, 133–149 (2016).

  38. 38.

    Dittgen, T. et al. Lentivirus-based genetic manipulations of cortical neurons and their optical and electrophysiological monitoring in vivo. Proc. Natl Acad. Sci. USA 101, 18206–18211 (2004).

  39. 39.

    Chan, K. Y. et al. Engineered AAVs for efficient noninvasive gene delivery to the central and peripheral nervous systems. Nat. Neurosci. 20, 1172–1179 (2017).

  40. 40.

    Deverman, B. E. et al. Cre-dependent selection yields AAV variants for widespread gene transfer to the adult brain. Nat. Biotechnol. 34, 204–209 (2016).

  41. 41.

    Zhu, H. et al. Chemogenetic inactivation of ventral hippocampal glutamatergic neurons disrupts consolidation of contextual fear memory. Neuropsychopharmacology 39, 1880–1892 (2014).

  42. 42.

    Whitaker, A. M., Gilpin, N. W. & Edwards, S. Animal models of post-traumatic stress disorder and recent neurobiological insights. Behav. Pharmacol. 25, 398–409 (2014).

  43. 43.

    VanElzakker, M. B., Dahlgren, M. K., Davis, F. C., Dubois, S. & Shin, L. M. From Pavlov to PTSD: the extinction of conditioned fear in rodents, humans, and anxiety disorders. Neurobiol. Learn. Mem. 113, 3–18 (2014).

  44. 44.

    Kheirbek, M. A. et al. Differential control of learning and anxiety along the dorsoventral axis of the dentate gyrus. Neuron 77, 955–968 (2013).

  45. 45.

    Blanchard, D. C. & Blanchard, R. J. Ethoexperimental approaches to the biology of emotion. Annu. Rev. Psychol. 39, 43–68 (1988).

  46. 46.

    Burgess, A., Dubey, S., Nhan, T., Aubert, I. & Hynynen, K. Therapeutic effects of focused ultrasound-mediated blood–brain barrier opening in a mouse model of Alzheimer’s disease. J. Ther. Ultrasound 3, O16 (2015).

  47. 47.

    Mooney, S. J. et al. Focused ultrasound-induced neurogenesis requires an increase in blood–brain barrier permeability. PLoS ONE 11, e0159892 (2016).

  48. 48.

    Lindeberg, J. et al. Transgenic expression of Cre recombinase from the tyrosine hydroxylase locus. Genesis 40, 67–73 (2004).

  49. 49.

    Jagmag, S. A., Tripathi, N., Shukla, S. D., Maiti, S. & Khurana, S. Evaluation of models of Parkinson’s disease. Front. Neurosci. 9, 503 (2015).

  50. 50.

    Lammel, S., Lim, B. K. & Malenka, R. C. Reward and aversion in a heterogeneous midbrain dopamine system. Neuropharmacology 76 (Part B), 351–359 (2014).

  51. 51.

    Chen, R., Romero, G., Christiansen, M. G., Mohr, A. & Anikeeva, P. Wireless magnetothermal deep brain stimulation. Science 347, 1477–1480 (2015).

  52. 52.

    Atasoy, D., Aponte, Y., Su, H. H. & Sternson, S. M. A FLEX switch targets Channelrhodopsin-2 to multiple cell types for imaging and long-range circuit mapping. J. Neurosci. 28, 7025–7030 (2008).

  53. 53.

    Saloman, J. L. et al. Gi-DREADD expression in peripheral nerves produces ligand-dependent analgesia, as well as ligand-independent functional changes in sensory neurons. J. Neurosci. 36, 10769–10781 (2016).

  54. 54.

    Baseri, B., Choi, J. J., Tung, Y. S. & Konofagou, E. E. Multi-modality safety assessment of blood–brain barrier opening using focused ultrasound and DEFINITY microbubbles: a short-term study. Ultrasound Med. Biol. 36, 1445–1459 (2010).

  55. 55.

    Badea, A., Ali-Sharief, A. A. & Johnson, G. A. Morphometric analysis of the C57BL/6J mouse brain. NeuroImage 37, 683–693 (2007).

  56. 56.

    Tung, Y. S. et al. In vivo transcranial cavitation threshold detection during ultrasound-induced blood–brain barrier opening in mice. Phys. Med. Biol. 55, 6141–6155 (2010).

  57. 57.

    Eldridge, M. A. G. et al. Chemogenetic disconnection of monkey orbitofrontal and rhinal cortex reversibly disrupts reward value. Nat. Neurosci. 19, 37–39 (2015).

  58. 58.

    Thomsen, G. M. et al. Delayed disease onset and extended survival in the SOD1G93A rat model of amyotrophic lateral sclerosis after suppression of mutant SOD1 in the motor cortex. J. Neurosci. 34, 15587–15600 (2014).

  59. 59.

    Russell, S. et al. Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65-mediated inherited retinal dystrophy: a randomised, controlled, open-label, phase 3 trial. Lancet 390, 849–860 (2017).

  60. 60.

    Tufail, Y. et al. Transcranial pulsed ultrasound stimulates intact brain circuits. Neuron 66, 681–694 (2010).

  61. 61.

    King, R. L., Brown, J. R., Newsome, W. T. & Pauly, K. B. Effective parameters for ultrasound-induced in vivo neurostimulation. Ultrasound Med. Biol. 39, 312–331 (2013).

  62. 62.

    Deffieux, T. et al. Low-intensity focused ultrasound modulates monkey visuomotor behavior. Curr. Biol. 23, 2430–2433 (2013).

  63. 63.

    Landhuis, E. Ultrasound for the brain. Nature 551, 257–259 (2017).

  64. 64.

    Airan, R. D. et al. Noninvasive targeted transcranial neuromodulation via focused ultrasound gated drug release from nanoemulsions. Nano Lett. 17, 652–659 (2017).

  65. 65.

    Sato, T., Shapiro, M. & Tsao, D. Ultrasonic neuromodulation causes widespread cortical activation via an indirect auditory mechanism. Neuron 98, 1031–1041 (2018).

  66. 66.

    McDannold, N. et al. Targeted, noninvasive blockade of cortical neuronal activity. Sci. Rep. 5, 16253 (2015).

  67. 67.

    Mehić, E. et al. Increased anatomical specificity of neuromodulation via modulated focused ultrasound. PLoS ONE 9, e86939 (2014).

  68. 68.

    Tyler, W. J., Lani, S. W. & Hwang, G. M. Ultrasonic modulation of neural circuit activity. Curr. Opin. Neurobiol. 50, 222–231 (2018).

  69. 69.

    Leinenga, G. & Gotz, J. Scanning ultrasound removes amyloid-β and restores memory in an Alzheimer’s disease mouse model. Sci. Transl. Med. 7, 278ra233 (2015).

  70. 70.

    Burgess, A. et al. Alzheimer disease in a mouse model: MR imaging-guided focused ultrasound targeted to the hippocampus opens the blood–brain barrier and improves pathologic abnormalities and behavior. Radiology 273, 736–745 (2014).

  71. 71.

    Burgess, M. T., Apostolakis, I. & Konofagou, E. E. Power cavitation-guided blood–brain barrier opening with focused ultrasound and microbubbles. Phys. Med. Biol. 63, 065009 (2018).

  72. 72.

    McDannold, N., Vykhodtseva, N. & Hynynen, K. Targeted disruption of the blood–brain barrier with focused ultrasound: association with cavitation activity. Phys. Med. Biol. 51, 793–807 (2006).

  73. 73.

    Sun, T. et al. Acoustic cavitation-based monitoring of the reversibility and permeability of ultrasound-induced blood–brain barrier opening. Phys. Med. Biol. 60, 9079–9094 (2015).

  74. 74.

    Jingfei, L., Josquin, F., Douglas, N. S., Olivier Le, B. & Katherine, W. F. Development of a spherically focused phased array transducer for ultrasonic image-guided hyperthermia. Phys. Med. Biol. 61, 5275–5296 (2016).

  75. 75.

    Deng, L., O’Reilly, M. A., Jones, R. M., An, R. & Hynynen, K. A multi-frequency sparse hemispherical ultrasound phased array for microbubble-mediated transcranial therapy and simultaneous cavitation mapping. Phys. Med. Biol. 61, 8476–8501 (2016).

  76. 76.

    Downs, M. E. et al. Long-term safety of repeated blood–brain barrier opening via focused ultrasound with microbubbles in non-human primates performing a cognitive task. PLoS ONE 10, e0125911 (2015).

  77. 77.

    Pernot, M., Aubry, J. F., Tanter, M., Thomas, J. L. & Fink, M. High power transcranial beam steering for ultrasonic brain therapy. Phys. Med. Biol. 48, 2577–2589 (2003).

  78. 78.

    Kamimura, H. A. S. et al. Chirp- and random-based coded ultrasonic excitation for localized blood–brain barrier opening. Phys. Med. Biol. 60, 7695–7712 (2015).

  79. 79.

    O’Reilly, M. A., Huang, Y. & Hynynen, K. The impact of standing wave effects on transcranial focused ultrasound disruption of the blood–brain barrier in a rat model. Phys. Med. Biol. 55, 5251–5267 (2010).

  80. 80.

    Younan, Y. et al. Influence of the pressure field distribution in transcranial ultrasonic neurostimulation. Med. Phys. 40, 082902 (2016).

  81. 81.

    Gomez, J. L. et al. Chemogenetics revealed: DREADD occupancy and activation via converted clozapine. Science 357, 503–507 (2017).

  82. 82.

    Roth, B. L. DREADDs for neuroscientists. Neuron 89, 683–694 (2016).

  83. 83.

    Vardy, E. et al. A new DREADD facilitates the multiplexed chemogenetic interrogation of behavior. Neuron 86, 936–946 (2015).

  84. 84.

    Magnus, C. J. et al. Chemical and genetic engineering of selective ion channel–ligand interactions. Science 333, 1292–1296 (2011).

  85. 85.

    Wang, S., Samiotaki, G., Olumolade, O., Feshitan, J. A. & Konofagou, E. E. Microbubble type and distribution dependence of focused ultrasound-induced blood–brain barrier opening. Ultrasound Med. Biol. 40, 130–137 (2014).

  86. 86.

    Choi, J. J., Selert, K., Vlachos, F., Wong, A. & Konofagou, E. E. Noninvasive and localized neuronal delivery using short ultrasonic pulses and microbubbles. Proc. Natl Acad. Sci. USA 108, 16539–16544 (2011).

  87. 87.

    Lein, E. S. et al. Genome-wide atlas of gene expression in the adult mouse brain. Nature 445, 168–176 (2007).

  88. 88.

    Grippo, R. M., Purohit, A. M., Zhang, Q., Zweifel, L. S. & Guler, A. D. Direct midbrain dopamine input to the suprachiasmatic nucleus accelerates circadian entrainment. Curr. Biol. 27, 2465–2475 (2017).

  89. 89.

    Koch, M. et al. Hypothalamic POMC neurons promote cannabinoid-induced feeding. Nature 519, 45–50 (2015).

  90. 90.

    Zincarelli, C., Soltys, S., Rengo, G. & Rabinowitz, J. E. Analysis of AAV serotypes 1–9 mediated gene expression and tropism in mice after systemic injection. Mol. Ther. 16, 1073–1080 (2008).

  91. 91.

    Mahler, S. V. et al. Designer receptors show role for ventral pallidum input to ventral tegmental area in cocaine seeking. Nat. Neurosci. 17, 577–585 (2014).

  92. 92.

    Eliava, M. et al. A new population of parvocellular oxytocin neurons controlling magnocellular neuron activity and inflammatory pain processing. Neuron 89, 1291–1304 (2016).

  93. 93.

    Alexander, G. M. et al. Remote control of neuronal activity in transgenic mice expressing evolved G protein-coupled receptors. Neuron 63, 27–39 (2009).

  94. 94.

    Sananbenesi, F. et al. A hippocampal Cdk5 pathway regulates extinction of contextual fear. Nat. Neurosci. 10, 1012–1019 (2007).

  95. 95.

    Kim, K. M. et al. Optogenetic mimicry of the transient activation of dopamine neurons by natural reward is sufficient for operant reinforcement. PLoS ONE 7, e33612 (2012).

  96. 96.

    DiMattia, M. A. et al. Structural insight into the unique properties of adeno-associated virus serotype 9. J. Virol. 86, 6947–6958 (2012).

  97. 97.

    Tarini, M., Cignoni, P. & Montani, C. Ambient occlusion and edge cueing for enhancing real time molecular visualization. IEEE Trans. Vis. Comput. Gr. 12, 1237–1244 (2006).

  98. 98.

    Majka, P., Kublik, E., Furga, G. & Wojcik, D. K. Common Atlas Format and 3D Brain Atlas Reconstructor: infrastructure for constructing 3D brain atlases. Neuroinformatics 10, 181–197 (2012).

  99. 99.

    Johnson, G. A. et al. Waxholm space: an image-based reference for coordinating mouse brain research. NeuroImage 53, 365–372 (2010).

Download references

Acknowledgements

The authors thank M. Zelikowsky for discussions and assistance with the design of the fear conditioning experiments, E. Dumont, R. Jacobs, A. Mukharjee and G. Lu for discussions and R. McCardell for assistance with the initial experiments. We thank the UCLA Translational Pathology Core Laboratory for assistance with the histological samples and Caltech’s Office of Laboratory Animal Research for help with rodent husbandry. This research was supported by the Heritage Medical Research Institute, the Jacobs Institute for Molecular Engineering in Medicine and the Defense Advanced Research Projects Agency (grant W911NF-17-2-0036). Related research in the Shapiro Laboratory is also supported by the Packard Fellowship in Science and Engineering and the Sontag Foundation Distinguished Scientist Award.

Author information

Affiliations

  1. Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA

    • Jerzy O. Szablowski
    • , Audrey Lee-Gosselin
    • , Brian Lue
    • , Dina Malounda
    •  & Mikhail G. Shapiro

Authors

  1. Search for Jerzy O. Szablowski in:

  2. Search for Audrey Lee-Gosselin in:

  3. Search for Brian Lue in:

  4. Search for Dina Malounda in:

  5. Search for Mikhail G. Shapiro in:

Contributions

J.O.S. and M.G.S. conceived and planned the research. J.O.S. performed the in vivo experiments. J.O.S., B.L., A.L.-G. and D.M. performed the histological experiments. J.O.S. and B.L. analysed the data. J.O.S. and M.G.S. wrote the manuscript with input from all other authors. M.G.S. supervised the research.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Mikhail G. Shapiro.

Supplementary information

  1. Supplementary Information

    Supplementary figures and table.

  2. Reporting Summary

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41551-018-0258-2