Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

An intravascular magnetic wire for the high-throughput retrieval of circulating tumour cells in vivo

This article has been updated

Abstract

The detection and analysis of rare blood biomarkers is necessary for early diagnosis of cancer and to facilitate the development of tailored therapies. However, current methods for the isolation of circulating tumour cells (CTCs) or nucleic acids present in a standard clinical sample of only 5–10 ml of blood provide inadequate yields for early cancer detection and comprehensive molecular profiling. Here, we report the development of a flexible magnetic wire that can retrieve rare biomarkers from the subject’s blood in vivo at a much higher yield. The wire is inserted and removed through a standard intravenous catheter and captures biomarkers that have been previously labelled with injected magnetic particles. In a proof-of-concept experiment in a live porcine model, we demonstrate the in vivo labelling and single-pass capture of viable model CTCs in less than 10 s. The wire achieves capture efficiencies that correspond to enrichments of 10–80 times the amount of CTCs in a 5-ml blood draw, and 500–5,000 times the enrichments achieved using the commercially available Gilupi CellCollector.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Schematic of the MagWIRE concept.
Fig. 2: Numerical simulations of the magnetic properties of a MagWIRE segment.
Fig. 3: CTC capture from buffer and blood in a continuous flow closed-loop system.
Fig. 4: CTC capture in single-pass flow in vitro and in vivo.
Fig. 5: Capture efficiencies for two uses of the MagWIRE: continuous versus single-pass flow.

Change history

  • 18 December 2019

    In the version of this Article originally published, the ORCID for Sanjiv S. Gambhir was incorrect; the correct ORCID is 0000-0002-2711-7554. This has now been amended.

References

  1. 1.

    Yu, M., Stott, S., Toner, M., Maheswaran, S. & Haber, D. A. Circulating tumor cells: approaches to isolation and characterization. J. Cell Biol. 192, 373–382 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Coumans, F. A. W., Ligthart, S. T., Uhr, J. W. & Terstappen, L. W. M. M. Challenges in the enumeration and phenotyping of CTC. Clin. Cancer Res. 18, 5711–5718 (2012).

    PubMed  Google Scholar 

  3. 3.

    Alix-Panabières, C. & Pantel, K. Challenges in circulating tumour cell research. Nat. Rev. Cancer 14, 623–631 (2014).

    PubMed  Google Scholar 

  4. 4.

    Yu, M. et al. Ex vivo culture of circulating breast tumor cells for individualized testing of drug susceptibility. Science 345, 216–220 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Cayrefourcq, L. et al. Establishment and characterization of a cell line from human circulating colon cancer cells. Cancer Res. 75, 892–901 (2015).

    CAS  PubMed  Google Scholar 

  6. 6.

    Stoecklein, N. H., Fischer, J. C., Niederacher, D. & Terstappen, L. W. M. M. Challenges for CTC-based liquid biopsies: low CTC frequency and diagnostic leukapheresis as a potential solution. Expert Rev. Mol. Diagn. 16, 147–164 (2016).

    CAS  PubMed  Google Scholar 

  7. 7.

    Adams, J. D., Kim, U. & Soh, H. T. Multitarget magnetic activated cell sorter. Proc. Natl Acad. Sci. USA 105, 18165–18170 (2008).

    CAS  PubMed  Google Scholar 

  8. 8.

    Earhart, C. M. et al. Isolation and mutational analysis of circulating tumor cells from lung cancer patients with magnetic sifters and biochips. Lab Chip 14, 78–88 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Kang, J. H. et al. A combined micromagnetic–microfluidic device for rapid capture and culture of rare circulating tumor cells. Lab Chip 12, 2175 (2012).

    CAS  PubMed  Google Scholar 

  10. 10.

    Pamme, N. Continuous flow separations in microfluidic devices. Lab Chip 7, 1644 (2007).

    CAS  PubMed  Google Scholar 

  11. 11.

    Inglis, D. W., Riehn, R., Sturm, J. C. & Austin, R. H. Microfluidic high gradient magnetic cell separation. J. Appl. Phys. 99, 08K101 (2006).

    CAS  Google Scholar 

  12. 12.

    Stott, S. L. et al. Isolation of circulating tumor cells using a microvortex-generating herringbone-chip. Proc. Natl Acad. Sci. USA 107, 18392–18397 (2010).

    CAS  PubMed  Google Scholar 

  13. 13.

    Ozkumur, E. et al. Inertial focusing for tumor antigen-dependent and -independent sorting of rare circulating tumor cells. Sci. Transl Med. 5, 179ra47 (2013).

    PubMed  PubMed Central  Google Scholar 

  14. 14.

    Nagrath, S. et al. Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 450, 1235–1239 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Che, J. et al. Classification of large circulating tumor cells isolated with ultra-high throughput microfluidic Vortex technology. Oncotarget 7, 12748–12760 (2016).

    PubMed  PubMed Central  Google Scholar 

  16. 16.

    Chung, J. et al. Rare cell isolation and profiling on a hybrid magnetic/size-sorting chip. Biomicrofluidics 7, 54107 (2013).

    PubMed  Google Scholar 

  17. 17.

    Hou, S. et al. Capture and stimulated release of circulating tumor cells on polymer-grafted silicon nanostructures. Adv. Mater. 25, 1547–1551 (2013).

    CAS  PubMed  Google Scholar 

  18. 18.

    Fischer, J. C. et al. Diagnostic leukapheresis enables reliable detection of circulating tumor cells of nonmetastatic cancer patients. Proc. Natl Acad. Sci. USA 110, 16580–16585 (2013).

    CAS  PubMed  Google Scholar 

  19. 19.

    Herrmann, I. K. et al. Device for continuous extracorporeal blood purification using target-specific metal nanomagnets. Nephrol. Dial. Transplant. 26, 2948–2954 (2011).

    CAS  PubMed  Google Scholar 

  20. 20.

    Saucedo-Zeni, N. et al. A novel method for the in vivo isolation of circulating tumor cells from peripheral blood of cancer patients using a functionalized and structured medical wire. Int. J. Oncol. 41, 1241–1250 (2012).

    PubMed  PubMed Central  Google Scholar 

  21. 21.

    Laurent, S., Saei, A. A., Behzadi, S., Panahifar, A. & Mahmoudi, M. Superparamagnetic iron oxide nanoparticles for delivery of therapeutic agents: opportunities and challenges. Expert Opin. Drug Deliv. 11, 1449–1470 (2014).

    CAS  PubMed  Google Scholar 

  22. 22.

    Fu, A. et al. Fluorescent magnetic nanoparticles for magnetically enhanced cancer imaging and targeting in living subjects. ACS Nano 6, 6862–6869 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Yellen, B. B. et al. Targeted drug delivery to magnetic implants for therapeutic applications. J. Magn. Magn. Mater. 293, 647–654 (2005).

    CAS  Google Scholar 

  24. 24.

    Polyak, B. et al. High field gradient targeting of magnetic nanoparticle-loaded endothelial cells to the surfaces of steel stents. Proc. Natl Acad. Sci. USA 105, 698–703 (2008).

    CAS  PubMed  Google Scholar 

  25. 25.

    Xia, N. et al. Combined microfluidic–micromagnetic separation of living cells in continuous flow. Biomed. Micro. 8, 299–308 (2006).

    CAS  Google Scholar 

  26. 26.

    Yavuz, C. T. et al. Low-field magnetic separation of monodisperse Fe3O4 nanocrystals. Science 314, 964–967 (2006).

    PubMed  Google Scholar 

  27. 27.

    Spivack, D. E., Kelly, P., Gaughan, J. P. & van Bemmelen, P. S. Mapping of superficial extremity veins: normal diameters and trends in a vascular patient-population. Ultrasound Med. Biol. 38, 190–194 (2012).

    PubMed  Google Scholar 

  28. 28.

    Thiriet, M. Biology and Mechanics of Blood Flows. CRM Series in Mathematical Physics (Springer, New York, 2008).

  29. 29.

    Aktas, B. et al. Stem cell and epithelial–mesenchymal transition markers are frequently overexpressed in circulating tumor cells of metastatic breast cancer patients. Breast Cancer Res. 11, R46 (2009).

    PubMed  PubMed Central  Google Scholar 

  30. 30.

    Zborowski, M. in Laboratory Techniques in Biochemistry and Molecular Biology Vol. 32, 29–61 (Elsevier, 2007).

  31. 31.

    Paterlini-Brechot, P. & Benali, N. L. Circulating tumor cells (CTC) detection: clinical impact and future directions. Cancer Lett. 253, 180–204 (2007).

    CAS  PubMed  Google Scholar 

  32. 32.

    Sharma, S. V., Bell, D. W., Settleman, J. & Haber, D. A. Epidermal growth factor receptor mutations in lung cancer. Nat. Rev. Cancer 7, 169–181 (2007).

    CAS  PubMed  Google Scholar 

  33. 33.

    Litwin, M. S. & Chapman, K. Physical factors affecting human blood viscosity. J. Surg. Res. 10, 433–436 (1970).

    CAS  PubMed  Google Scholar 

  34. 34.

    Armstrong, A. J. et al. Circulating tumor cells from patients with advanced prostate and breast cancer display both epithelial and mesenchymal markers. Mol. Cancer Res. 9, 997–1007 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Liu, Y. et al. Circulating tumor cells in HER2-positive metastatic breast cancer patients: a valuable prognostic and predictive biomarker. BMC Cancer 13, 202 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Meng, S. Circulating tumor cells in patients with breast cancer dormancy. Clin. Cancer Res. 10, 8152–8162 (2004).

    PubMed  Google Scholar 

  37. 37.

    Petros, R. A. & DeSimone, J. M. Strategies in the design of nanoparticles for therapeutic applications. Nat. Rev. Drug Discov. 9, 615–627 (2010).

    CAS  PubMed  Google Scholar 

  38. 38.

    Dorsey, J. F. et al. Tracking viable circulating tumor cells (CTCs) in the peripheral blood of non-small cell lung cancer (NSCLC) patients undergoing definitive radiation therapy: pilot study results. Cancer 121, 139–149 (2015).

    PubMed  Google Scholar 

  39. 39.

    Jain, T. K., Reddy, M. K., Morales, M. A., Leslie-Pelecky, D. L. & Labhasetwar, V. Biodistribution, clearance, and biocompatibility of iron oxide magnetic nanoparticles in rats. Mol. Pharm. 5, 316–327 (2008).

    CAS  PubMed  Google Scholar 

  40. 40.

    Tate, J. A., Petryk, A. A., Giustini, A. J. & Hoopes, P. J. In vivo biodistribution of iron oxide nanoparticles: an overview. Proc. SPIE Int. Soc. Opt. Eng. 7901, 790117 (2011).

    PubMed  PubMed Central  Google Scholar 

  41. 41.

    Arami, H., Khandhar, A., Liggitt, D. & Krishnan, K. M. In vivo delivery, pharmacokinetics, biodistribution and toxicity of iron oxide nanoparticles. Chem. Soc. Rev. 44, 8576–8607 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Tsoi, K. M. et al. Mechanism of hard-nanomaterial clearance by the liver. Nat. Mater. 15, 1212–1221 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Coumans, F. & Terstappen, L. in Whole Genome Amplification. Methods and Protocols Vol. 1347 (ed. Kroneis, T.) 263–278 (Humana Press, 2015).

  44. 44.

    Talasaz, A. H. et al. Isolating highly enriched populations of circulating epithelial cells and other rare cells from blood using a magnetic sweeper device. Proc. Natl Acad. Sci. USA 106, 3970–3975 (2009).

    CAS  PubMed  Google Scholar 

  45. 45.

    Galanzha, E. I. et al. In vivo magnetic enrichment and multiplex photoacoustic detection of circulating tumour cells. Nat. Nanotechnol. 4, 855–860 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Fonnum, G., Johansson, C., Molteberg, A., Mørup, S. & Aksnes, E. Characterisation of Dynabeads® by magnetization measurements and Mössbauer spectroscopy. J. Magn. Magn. Mater. 293, 41–47 (2005).

    CAS  Google Scholar 

  47. 47.

    Vermesh, O. et al. Dataset for ‘An intravascular magnetic wire for the high-throughput retrieval of circulating tumour cells in vivo’. figshare https://doi.org/10.6084/m9.figshare.6272414 (2018).

  48. 48.

    Diaz, L. A. & Bardelli, A. Liquid biopsies: genotyping circulating tumor DNA. J. Clin. Oncol. 32, 579–586 (2014).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank D. Sze, A. Thakor, M. Mahmoudi, H. Nejadnik, T. Larson, A. de Souza and H. Tom Soh for discussions. We also thank Pork Power Farms for their help in choosing suitable pigs for the study. We would also like to acknowledge the Veterinary Service Center and Animal Diagnostic Laboratory at Stanford. This research was supported by the US National Institutes of Health (NIH) Awards U54CA151459 (Center for Cancer Nanotechnology Excellence and Translation) and R21CA185804 (to S.S.G. and S.X.W.), the Canary Foundation (to S.S.G.), and the Ben and Catherine Ivy Foundation. The authors also acknowledge funding support from the NIH Shared Instrument Grant S10 RR026714.

Author information

Affiliations

Authors

Contributions

O.V., A.A., T.J.G. and S.S.G conceived and designed the research. O.V., A.A. and T.J.G. performed all experiments. O.V., A.A., T.J.G., S.-m.P., C.N.A., E.I.S., S.X.W. and S.S.G analysed the data. T.J.G. and Y.G. performed the computational modelling. Y.M., Y.S., J.K.L, A.G. and K.M. aided with the porcine model. O.V., I.S.A., C.N.A., J.V.-M., E.G. and E.I.S. conducted and analysed the toxicity, biodistribution and pharmacokinetic studies. C.C.O. and H.A. aided with MP characterization. M.H.B. contributed cell culture expertise and reagents. O.V., A.A., T.J.G., S.-m.P. and S.S.G drafted the manuscript with input from all of the authors.

Corresponding author

Correspondence to Sanjiv S. Gambhir.

Ethics declarations

Competing interests

O.V., A.A., T.J.G., S.-m.P, and S.S.G. have filed for patent protection for the MagWIRE technology. The remaining authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary figures, tables and video captions.

Reporting Summary

Supplementary Video 1

Trajectories and distribution of magnetic particles along the MagWIRE.

Supplementary Video 2

Magnetic particle accumulation on MagWIRE.

Supplementary Video 3

Single-pass method of rapid cell labelling and capture.

Supplementary Video 4

Fluoroscopy of the highly vascularized porcine ear.

Supplementary Video 5

Fluoroscopy of the MagWIRE in a porcine ear vein.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vermesh, O., Aalipour, A., Ge, T.J. et al. An intravascular magnetic wire for the high-throughput retrieval of circulating tumour cells in vivo. Nat Biomed Eng 2, 696–705 (2018). https://doi.org/10.1038/s41551-018-0257-3

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing