Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A designer self-assembled supramolecule amplifies macrophage immune responses against aggressive cancer

Abstract

Effectively activating macrophages that can ‘eat’ cancer cells is challenging. In particular, cancer cells secrete macrophage colony stimulating factor (MCSF), which polarizes tumour-associated macrophages from an antitumour M1 phenotype to a pro-tumorigenic M2 phenotype. Also, cancer cells can express CD47, a ‘don’t eat me’ signal that ligates with the signal regulatory protein alpha (SIRPα) receptor on macrophages to prevent phagocytosis. Here, we show that a supramolecular assembly consisting of amphiphiles inhibiting the colony stimulating factor 1 receptor (CSF-1R) and displaying SIRPα-blocking antibodies with a drug-to-antibody ratio of 17,000 can disable both mechanisms. The supramolecule homes onto SIRPα on macrophages, blocking the CD47–SIRPα signalling axis while sustainedly inhibiting CSF-1R. The supramolecule enhances M2-to-M1 repolarization within the tumour microenvironment, and significantly improves antitumour and antimetastatic efficacies in two aggressive animal models of melanoma and breast cancer, with respect to clinically available small-molecule and biologic inhibitors of CSF-1R signalling. Simultaneously blocking the CD47–SIRPα and MCSF–CSF-1R signalling axes may constitute a promising immunotherapy.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Design of a TAM-targeting supramolecular therapeutic.
Fig. 2: AK750 inhibits CSF-1R and downstream signalling pathways in a sustained manner, and efficiently repolarizes M2 macrophages to the M1 phenotype.
Fig. 3: In vivo efficacy of AK750 in a syngeneic B-16/F10 melanoma C57BL/6 mice model.
Fig. 4: AK750 induces significant tumour growth inhibition in a syngeneic 4T1 breast cancer BALB/c mice model.
Fig. 5: Engineering a bifunctional anti-SIRPα–AK750 that blocks the CD47–SIRPα axis and CSF-1R.
Fig. 6: Single dose of anti-SIRPα–AK750 abrogates tumour growth in a syngeneic B-16/F10 melanoma C57BL/6 mouse model.

Similar content being viewed by others

References

  1. Mantovani, A., Marchesi, F., Malesci, A., Laghi, L. & Allavena, P. Tumour-associated macrophages as treatment targets in oncology. Nat. Rev. Clin. Oncol. 14, 399–416 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Engblom, C., Pfirschke, C., & Pittet, M. J. The role of myeloid cells in cancer therapies. Nat. Rev. Cancer 16, 447–462 (2016).

    Article  PubMed  CAS  Google Scholar 

  3. Noy, R., & Pollard, J. W. Tumor-associated macrophages: from mechanisms to therapy. Immunity 41, 49–61 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Condeelis, J., & Pollard, J. W. Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell 124, 263–266 (2006).

    Article  PubMed  CAS  Google Scholar 

  5. Gabrilovich, D. I., Ostrand-Rosenberg, S. & Bronte, V. Coordinated regulation of myeloid cells by tumours. Nat. Rev. Immunol. 12, 253–268 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Grivennikov, S. I., Greten, F. R., & Karin, M. Immunity, inflammation, and cancer. Cell 140, 883–899 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Biswas, S. K. & Mantovani, A. Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat. Immunol. 11, 889–896 (2010).

    Article  PubMed  CAS  Google Scholar 

  8. Mosser, D. M. & Edwards, J. P. Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol. 8, 958–969 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Sica, A. et al. Macrophage polarization in tumour progression. Sem. Cancer Biol. 18, 349–355 (2008).

    Article  CAS  Google Scholar 

  10. Qian, B. Z. & Pollard, J. W. Macrophage diversity enhances tumor progression and metastasis. Cell 141, 39–51 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Ruffell, B. & Coussens, L. M. Macrophages and therapeutic resistance in cancer. Cancer Cell 27, 462–472 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Ries, C. H. et al. Targeting tumor-associated macrophages with anti-CSF-1R antibody reveals a strategy for cancer therapy. Cancer Cell 25, 846–859 (2014).

    Article  PubMed  CAS  Google Scholar 

  13. Pyonteck, S. M. et al. CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat. Med. 19, 1264–1272 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Chao, M. P., Weissman, I. L. & Majeti, R. The CD47-SIRPα pathway in cancer immune evasion and potential therapeutic implications. Curr. Opin. Immunol. 24, 225–232 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. McCracken, M. N., Cha, A. C. & Weissman, I. L. Molecular pathways: activating T cells after cancer cell phagocytosis from blockade of CD47 “don’t eat me” signals. Clin. Cancer Res. 21, 3597–3601 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Beck, A., Goetsch, L., Dumontet, C. & Corvaia, N. Strategies and challenges for the next generation of antibody–drug conjugates. Nat. Rev. Drug Discov. 16, 315–337 (2017).

    Article  PubMed  CAS  Google Scholar 

  17. Garber, K. Bispecific antibodies rise again. Nat. Rev. Drug Discov. 13, 799–801 (2014).

    Article  PubMed  CAS  Google Scholar 

  18. Kulkarni, A. et al. Algorithm for designing nanoscale supramolecular therapeutics with increased anticancer efficacy. ACS Nano 10, 8154–8168 (2016).

    Article  PubMed  CAS  Google Scholar 

  19. Kulkarni, A., Natarajan, S. K., Chandrasekar, V., Pandey, P. R. & Sengupta, S. Combining immune checkpoint inhibitors and kinase-inhibiting supramolecular therapeutics for enhanced anticancer efficacy. ACS Nano 10, 9227–9242 (2016).

    Article  CAS  Google Scholar 

  20. Kulkarni, A. A. et al. Supramolecular nanoparticles that target phosphoinositide-3-kinase overcome insulin resistance and exert pronounced antitumor efficacy. Cancer Res. 73, 6987–6997 (2013).

    Article  PubMed  CAS  Google Scholar 

  21. Zhou, D. et al. Macrophage polarization and function with emphasis on the evolving roles of coordinated regulation of cellular signaling pathways. Cell. Signal. 26, 192–197 (2014).

    Article  PubMed  CAS  Google Scholar 

  22. Wilson, H. M. SOCS proteins in macrophage polarization and function. Front. Immunol. 5, 357, (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Ruffell, B., Affara, N. I. & Coussens, L. M. Differential macrophage programming in the tumor microenvironment. Trends Immunol. 33, 119–126 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Whyte, C. S. et al. Suppressor of cytokine signaling (SOCS)1 is a key determinant of differential macrophage activation and function. J. Leukoc. Biol. 90, 845–854 (2011).

    Article  PubMed  CAS  Google Scholar 

  25. Genin, M., Clement, F., Fattaccioli, A., Raes, M. & Michiels, C. M1 and M2 macrophages derived from THP-1 cells differentially modulate the response of cancer cells to etoposide. BMC Cancer 15, 577 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Gajewski, T. F., Schreiber, H. & Fu, Y. X. Innate and adaptive immune cells in the tumor microenvironment. Nat. Immunol. 14, 1014–1022 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Ruffell, B. et al. Macrophage IL-10 blocks CD8+ T cell-dependent responses to chemotherapy by suppressing IL-12 expression in intratumoral dendritic cells. Cancer Cell 26, 623–637 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Diamantis, N. & Banerji, U. Antibody-drug conjugates–an emerging class of cancer treatment. Br. J. Cancer 114, 362–367 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Goldman, A. et al. Rationally designed 2-in-1 nanoparticles can overcome adaptive resistance in cancer. ACS Nano 10, 5823–5834 (2016).

    Article  PubMed  CAS  Google Scholar 

  30. Sengupta, S. Cancer nanomedicine: lessons for immuno-oncology. Trends Cancer 3, 551–560 (2017).

    Article  PubMed  Google Scholar 

  31. Gholamin, S. et al. Disrupting the CD47-SIRPà anti-phagocytic axis by a humanized anti-CD47 antibody is an efficacious treatment for malignant pediatric brain tumors. Sci. Transl. Med. 9, eaaf2968 (2017).

    Article  PubMed  CAS  Google Scholar 

  32. Long, G. V. et al. Standard-dose pembrolizumab in combination with reduced-dose ipilimumab for patients with advanced melanoma (KEYNOTE-029): an open-label, phase 1b trial. Lancet Oncol. 18, 1202–1210 (2017).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a DoD Breakthrough Award (BC132168), an American Lung Association Innovation Award (LCD-259932-N), and an NCI UO1 (CA214411) to S.S. and a National Cancer Institute of the National Institutes of Health (P50CA168504) and Hearst Foundation/Brigham and Women’s Hospital Young Investigator Award to A.K. The authors would like to thank the Dana Farber Cancer Institute Flow Cytometry Core Facility for their expertise, consulting and assistance with flow cytometry experiments. The authors would like to thank the Mass Spectrometry Core Facility and Biophysical Characterization Core Facility at the Institute for Applied Life Sciences (IALS), University of Massachusetts Amherst for consultation and assistance with mass spectrometry experiments.

Author information

Authors and Affiliations

Authors

Contributions

A.K. conceived the idea, designed the experiments and mentored the research. P.P. performed the molecular dynamics simulation studies. V.C., S.K.N. and A.R. performed the supramolecule synthesis and characterization. V.C., S.K.N., A.R., J.N., H.B. and D.A. performed in vitro experiments. A.K.A. helped with confocal imaging. A.K., V.C., S.K.N. and A.R. performed in vivo experiments. A.K. and S.S. wrote the paper and received comments and edits from all the authors.

Corresponding authors

Correspondence to Ashish Kulkarni or Shiladitya Sengupta.

Ethics declarations

Competing interests

S.S. is a cofounder and holds equity in Akamara Therapeutics, which is developing supramolecular therapeutics, and holds equity in Mitra Biotech, which is developing cancer diagnostics.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Supplementary methods, figures and tables.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulkarni, A., Chandrasekar, V., Natarajan, S.K. et al. A designer self-assembled supramolecule amplifies macrophage immune responses against aggressive cancer. Nat Biomed Eng 2, 589–599 (2018). https://doi.org/10.1038/s41551-018-0254-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41551-018-0254-6

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer