Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Harnessing cell pluripotency for cardiovascular regenerative medicine

Abstract

Human pluripotent stem cells (hPSCs), in particular embryonic stem cells and induced pluripotent stem cells, have received enormous attention in cardiovascular regenerative medicine owing to their ability to expand and differentiate into functional cardiomyocytes and other cardiovascular cell types. Despite the potential applications of hPSCs for tissue regeneration in patients suffering from cardiovascular disease, whether hPSC-based therapies can be safe and efficacious remains inconclusive, with strong evidence from clinical trials lacking. Critical factors limiting therapeutic efficacy are the degree of maturity and purity of the hPSC-derived differentiated progeny, and the tumorigenic risk associated with residual undifferentiated cells. In this Review, we discuss recent advances in cardiac-cell differentiation from hPSCs and in the direct reprogramming of non-myocyte cells for cardiovascular regenerative applications. We also discuss approaches for the delivery of cells to diseased tissue, and how such advances are contributing to progress in cardiac tissue engineering for tackling heart disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Pluripotent stem cell therapy for cardiovascular regeneration.
Fig. 2: The trajectory from pluripotent stem cells to fully differentiated cells through progenitor cells.
Fig. 3: Mechanisms of cell-based therapy for cardiovascular regeneration.

Similar content being viewed by others

References

  1. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

    CAS  PubMed  Google Scholar 

  2. Yu, J. et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917–1920 (2007).

    CAS  PubMed  Google Scholar 

  3. Zhao, M. T. et al. Molecular and functional resemblance of differentiated cells derived from isogenic human iPSCs and SCNT-derived ESCs. Proc. Natl Acad. Sci. USA 114, E11111–E11120 (2017).

    CAS  PubMed  Google Scholar 

  4. Neofytou, E., O’Brien, C. G., Couture, L. A. & Wu, J. C. Hurdles to clinical translation of human induced pluripotent stem cells. J. Clin. Invest. 125, 2551–2557 (2015).

    PubMed  PubMed Central  Google Scholar 

  5. Burridge, P. W., Sharma, A. & Wu, J. C. Genetic and epigenetic regulation of human cardiac reprogramming and differentiation in regenerative medicine. Annu. Rev. Genet. 49, 461–484 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Kawamura, M. et al. Feasibility, safety, and therapeutic efficacy of human induced pluripotent stem cell-derived cardiomyocyte sheets in a porcine ischemic cardiomyopathy model. Circulation 126, S29–S37 (2012).

    CAS  PubMed  Google Scholar 

  7. Shiba, Y. et al. Human ES-cell-derived cardiomyocytes electrically couple and suppress arrhythmias in injured hearts. Nature 489, 322–325 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Chong, J. J. et al. Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts. Nature 510, 273–277 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Ong, S. G. et al. Microfluidic single-cell analysis of transplanted human induced pluripotent stem cell-derived cardiomyocytes after acute myocardial infarction. Circulation 132, 762–771 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Shiba, Y. et al. Allogeneic transplantation of iPS cell-derived cardiomyocytes regenerates primate hearts. Nature 538, 388–391 (2016).

    CAS  PubMed  Google Scholar 

  11. Zwi, L. et al. Cardiomyocyte differentiation of human induced pluripotent stem cells. Circulation 120, 1513–1523 (2009).

    CAS  PubMed  Google Scholar 

  12. Burridge, P. W. et al. Chemically defined generation of human cardiomyocytes. Nat. Methods 11, 855–860 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Burridge, P. W. et al. Chemically defined culture and cardiomyocytes differentiation of human pluripotent stem cells. Current Protoc. Human Genet. 15, 21–23 (2015).

    Google Scholar 

  14. Gepstein, L. et al. In vivo assessment of the electrophysiological integration and arrhythmogenic risk of myocardial cell transplantation strategies. Stem Cells 28, 2151–2161 (2010).

    PubMed  Google Scholar 

  15. Kuppusamy, K. T. et al. Let-7 family of microRNA is required for maturation and adult-like metabolism in stem cell-derived cardiomyocytes. Proc. Natl Acad. Sci. USA 112, E2785–E2794 (2015).

    CAS  PubMed  Google Scholar 

  16. Wen, J. Y. et al. Maturation-based model of arrhythmogenic right ventricular dysplasia using patient-specific induced pluripotent stem cells. Circ. J. 79, 1402–1408 (2015).

    CAS  PubMed  Google Scholar 

  17. Kadota, S., Pabon, L., Reinecke, H. & Murry, C. E. In vivo maturation of human induced pluripotent stem cell-derived cardiomyocytes in neonatal and adult rat hearts. Stem Cell Rep. 8, 278–289 (2017).

    CAS  Google Scholar 

  18. Cho, G. S., Tampakakis, E., Andersen, P. & Kwon, C. Use of a neonatal rat system as a bioincubator to generate adult-like mature cardiomyocytes from human and mouse pluripotent stem cells. Nat. Protoc. 12, 2097–2109 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Ribeiro, A. J. et al. Contractility of single cardiomyocytes differentiated from pluripotent stem cells depends on physiological shape and substrate stiffness. Proc. Natl Acad. Sci. USA 112, 12705–12710 (2015).

    CAS  PubMed  Google Scholar 

  20. Boothe, S. D. et al. The effect of substrate stiffness on cardiomyocyte action potentials. Cell Biochem. Biophys. 74, 527–535 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Dvir, T. et al. Nanowired three-dimensional cardiac patches. Nat. Nanotech. 6, 720–725 (2011).

    CAS  Google Scholar 

  22. Tiburcy, M. et al. Defined engineered human myocardium with advanced maturation for applications in heart failure modeling and repair. Circulation 135, 1832–1847 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Sayed, N., Liu, C. & Wu, J. C. Translation of human induced pluripotent stem cells: from clinical trial in a dish to precision medicine. J. Am. Coll. Cardiol. 67, 2161–2176 (2016).

    PubMed  PubMed Central  Google Scholar 

  24. Riegler, J., Gillich, A., Shen, Q., Gold, J. D. & Wu, J. C. Cardiac tissue slice transplantation as a model to assess tissue-engineered graft thickness, survival, and function. Circulation 130, S77–S86 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Levenberg, S., Golub, J. S., Amit, M., Itskovitz-Eldor, J. & Langer, R. Endothelial cells derived from human embryonic stem cells. Proc. Natl Acad. Sci. USA 99, 4391–4396 (2002).

    CAS  PubMed  Google Scholar 

  26. James, D. et al. Expansion and maintenance of human embryonic stem cell-derived endothelial cells by TGFβ inhibition is Id1 dependent. Nat. Biotechnol. 28, 161–166 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Nourse, M. B. et al. VEGF induces differentiation of functional endothelium from human embryonic stem cells: implications for tissue engineering. Arterioscler. Thromb. Vasc. Biol. 30, 80–89 (2010).

    CAS  PubMed  Google Scholar 

  28. Lu, S. J. et al. Robust generation of hemangioblastic progenitors from human embryonic stem cells. Regen. Med. 3, 693–704 (2008).

    CAS  PubMed  Google Scholar 

  29. Samuel, R. et al. Generation of functionally competent and durable engineered blood vessels from human induced pluripotent stem cells. Proc. Natl Acad. Sci. USA 110, 12774–12779 (2013).

    CAS  PubMed  Google Scholar 

  30. Kusuma, S. et al. Self-organized vascular networks from human pluripotent stem cells in a synthetic matrix. Proc. Natl Acad. Sci. USA 110, 12601–12606 (2013).

    CAS  PubMed  Google Scholar 

  31. Song, W., Kaufman, D. S. & Shen, W. Efficient generation of endothelial cells from human pluripotent stem cells and characterization of their functional properties. J. Biomed. Mater. Res. A 104, 678–687 (2016).

    CAS  PubMed  Google Scholar 

  32. Kane, N. M. et al. Derivation of endothelial cells from human embryonic stem cells by directed differentiation: analysis of microRNA and angiogenesis in vitro and in vivo. Arterioscler. Thromb. Vasc. Biol. 30, 1389–1397 (2010).

    CAS  PubMed  Google Scholar 

  33. Lian, X. et al. Efficient differentiation of human pluripotent stem cells to endothelial progenitors via small-molecule activation of WNT signaling. Stem Cell Rep. 3, 804–816 (2014).

    CAS  Google Scholar 

  34. Zhang, J. et al. Functional characterization of human pluripotent stem cell-derived arterial endothelial cells. Proc. Natl Acad. Sci. USA 114, E6072–E6078 (2017).

    CAS  PubMed  Google Scholar 

  35. Rufaihah, A. J. et al. Endothelial cells derived from human iPSCS increase capillary density and improve perfusion in a mouse model of peripheral arterial disease. Arterioscler. Thromb. Vasc. Biol. 31, e72–e79 (2011).

    CAS  PubMed  Google Scholar 

  36. Li, Z. et al. Functional and transcriptional characterization of human embryonic stem cell-derived endothelial cells for treatment of myocardial infarction. PLoS ONE 4, e8443 (2009).

    PubMed  PubMed Central  Google Scholar 

  37. Masumoto, H. et al. Human iPS cell-engineered cardiac tissue sheets with cardiomyocytes and vascular cells for cardiac regeneration. Sci. Rep. 4, 6716 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Ye, L. et al. Cardiac repair in a porcine model of acute myocardial infarction with human induced pluripotent stem cell-derived cardiovascular cells. Cell Stem Cell 15, 750–761 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Rufaihah, A. J. et al. Human induced pluripotent stem cell-derived endothelial cells exhibit functional heterogeneity. Am. J. Transl. Res. 5, 21–35 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Li, R. K., Jia, Z. Q., Weisel, R. D., Merante, F. & Mickle, D. A. Smooth muscle cell transplantation into myocardial scar tissue improves heart function. J. Mol. Cell. Cardiol. 31, 513–522 (1999).

    CAS  PubMed  Google Scholar 

  41. Cheung, C. & Sinha, S. Human embryonic stem cell-derived vascular smooth muscle cells in therapeutic neovascularisation. J. Mol. Cell. Cardiol. 51, 651–664 (2011).

    CAS  PubMed  Google Scholar 

  42. Ayoubi, S., Sheikh, S. P. & Eskildsen, T. V. Human induced pluripotent stem cell-derived vascular smooth muscle cells: differentiation and therapeutic potential. Cardiovasc. Res. 113, 1282–1293 (2017).

    CAS  PubMed  Google Scholar 

  43. Mauritz, C. et al. Induced pluripotent stem cell (iPSC)-derived Flk-1 progenitor cells engraft, differentiate, and improve heart function in a mouse model of acute myocardial infarction. Eur. Heart J. 32, 2634–2641 (2011).

    CAS  PubMed  Google Scholar 

  44. Yang, L. et al. Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived population. Nature 453, 524–528 (2008).

    CAS  PubMed  Google Scholar 

  45. Skelton, R. J. et al. CD13 and ROR2 permit isolation of highly enriched cardiac mesoderm from differentiating human embryonic stem cells. Stem Cell Rep. 6, 95–108 (2016).

    CAS  Google Scholar 

  46. Menasche, P. et al. Towards a clinical use of human embryonic stem cell-derived cardiac progenitors: a translational experience. Eur. Heart J. 36, 743–750 (2015).

    CAS  PubMed  Google Scholar 

  47. Asahara, T. et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science 275, 964–967 (1997).

    CAS  PubMed  Google Scholar 

  48. Friedrich, E. B., Walenta, K., Scharlau, J., Nickenig, G. & Werner, N. CD34/CD133+/VEGFR-2+ endothelial progenitor cell subpopulation with potent vasoregenerative capacities. Circ. Res. 98, e20–e25 (2006).

    CAS  PubMed  Google Scholar 

  49. Patel, J. et al. Functional definition of progenitors versus mature endothelial cells reveals key SoxF-dependent differentiation process. Circulation 135, 786–805 (2017).

    CAS  PubMed  Google Scholar 

  50. Feng, Q. et al. Hemangioblastic derivatives from human induced pluripotent stem cells exhibit limited expansion and early senescence. Stem Cells 28, 704–712 (2010).

    PubMed  Google Scholar 

  51. Cimato, T. et al. Neuropilin-1 identifies endothelial precursors in human and murine embryonic stem cells before CD34 expression. Circulation 119, 2170–2178 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Prasain, N. et al. Differentiation of human pluripotent stem cells to cells similar to cord-blood endothelial colony-forming cells. Nat. Biotechnol. 32, 1151–1157 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Bao, X. et al. Long-term self-renewing human epicardial cells generated from pluripotent stem cells under defined xeno-free conditions. Nat. Biomed. Eng. 1, 0003 (2016).

    PubMed  PubMed Central  Google Scholar 

  54. Bao, X. et al. Directed differentiation and long-term maintenance of epicardial cells derived from human pluripotent stem cells under fully defined conditions. Nat. Protoc. 12, 1890–1900 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhao, J. et al. Efficient differentiation of TBX18+/WT1+ epicardial-like cells from human pluripotent stem cells using small molecular compounds. Stem Cells Dev. 26, 528–540 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Cano, E. et al. Extracardiac septum transversum/proepicardial endothelial cells pattern embryonic coronary arterio-venous connections. Proc. Natl Acad. Sci. USA 113, 656–661 (2016).

    CAS  PubMed  Google Scholar 

  57. Wei, K. et al. Epicardial FSTL1 reconstitution regenerates the adult mammalian heart. Nature 525, 479–485 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Huang, G. N. et al. C/EBP transcription factors mediate epicardial activation during heart development and injury. Science 338, 1599–1603 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Ramjee, V. et al. Epicardial YAP/TAZ orchestrate an immunosuppressive response following myocardial infarction. J. Clin. Invest. 127, 899–911 (2017).

    PubMed  PubMed Central  Google Scholar 

  60. Hatzistergos, K. E. & Vedenko, A. Cardiac cell therapy 3.0: the beginning of the end or the end of the beginning? Circ. Res. 121, 95–97 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Fernandes, S. et al. Comparison of human embryonic stem cell-derived cardiomyocytes, cardiovascular progenitors, and bone marrow mononuclear cells for cardiac repair. Stem Cell Rep. 5, 753–762 (2015).

    CAS  Google Scholar 

  62. Gao, L. et al. Myocardial tissue engineering with cells derived from human-induced pluripotent stem cells and a native-like, high-resolution, 3-dimensionally printed scaffold. Circ. Res. 120, 1318–1325 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Ebert, A. D., Diecke, S., Chen, I. Y. & Wu, J. C. Reprogramming and transdifferentiation for cardiovascular development and regenerative medicine: where do we stand? EMBO Mol. Med. 7, 1090–1103 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Ebrahimi, B. In vivo reprogramming for heart regeneration: a glance at efficiency, environmental impacts, challenges and future directions. J. Mol. Cell. Cardiol. 108, 61–72 (2017).

    CAS  PubMed  Google Scholar 

  65. Nam, Y. J. et al. Reprogramming of human fibroblasts toward a cardiac fate. Proc. Natl Acad. Sci. USA 110, 5588–5593 (2013).

    CAS  PubMed  Google Scholar 

  66. Cao, N. et al. Conversion of human fibroblasts into functional cardiomyocytes by small molecules. Science 352, 1216–1220 (2016).

    CAS  PubMed  Google Scholar 

  67. Ieda, M. et al. Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell 142, 375–386 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Miyamoto, K. et al. Direct in vivo reprogramming with Sendai virus vectors improves cardiac function after myocardial infarction. Cell Stem Cell 22, 91–103.e5 (2018).

    CAS  PubMed  Google Scholar 

  69. Qian, L. et al. In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes. Nature 485, 593–598 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Chen, J. X. et al. Inefficient reprogramming of fibroblasts into cardiomyocytes using Gata4, Mef2c, and Tbx5. Circ. Res. 111, 50–55 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Lalit, P. A. et al. Lineage reprogramming of fibroblasts into proliferative induced cardiac progenitor cells by defined factors. Cell Stem Cell 18, 354–367 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Zhang, Y. et al. Expandable cardiovascular progenitor cells reprogrammed from fibroblasts. Cell Stem Cell 18, 368–381 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Lee, S. et al. Direct reprogramming of human dermal fibroblasts into endothelial cells using ER71/ETV2. Circ. Res. 120, 848–861 (2017).

    CAS  PubMed  Google Scholar 

  74. Sayed, N. et al. Transdifferentiation of human fibroblasts to endothelial cells: role of innate immunity. Circulation 131, 300–309 (2015).

    CAS  PubMed  Google Scholar 

  75. Shadrin, I. Y. et al. Cardiopatch platform enables maturation and scale-up of human pluripotent stem cell-derived engineered heart tissues. Nat. Commun. 8, 1825 (2017).

    PubMed  PubMed Central  Google Scholar 

  76. Jackman, C. P. et al. Engineered cardiac tissue patch maintains structural and electrical properties after epicardial implantation. Biomaterials 159, 48–58 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Weinberger, F. et al. Cardiac repair in guinea pigs with human engineered heart tissue from induced pluripotent stem cells. Sci. Transl. Med. 8, 363ra148 (2016).

    PubMed  Google Scholar 

  78. Abilez, O. J. & Wu, J. C. Stem cell reprogramming: a 3D boost. Nat. Mater. 15, 259–261 (2016).

    CAS  PubMed  Google Scholar 

  79. Abilez, O. J. et al. Passive stretch induces structural and functional maturation of engineered heart muscle as predicted by computational modeling. Stem Cells 36, 265–277 (2017).

    PubMed  PubMed Central  Google Scholar 

  80. Ruvinov, E. & Cohen, S. Alginate biomaterial for the treatment of myocardial infarction: progress, translational strategies, and clinical outlook: from ocean algae to patient bedside. Adv. Drug Deliv. Rev. 96, 54–76 (2016).

    CAS  PubMed  Google Scholar 

  81. Orr, S. et al. TGF-β affinity-bound to a macroporous alginate scaffold generates local and peripheral immunotolerant responses and improves allocell transplantation. Acta Biomater. 45, 196–209 (2016).

    CAS  PubMed  Google Scholar 

  82. Zhang, D. et al. Tissue-engineered cardiac patch for advanced functional maturation of human ESC-derived cardiomyocytes. Biomaterials 34, 5813–5820 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Menasche, P. et al. Transplantation of human embryonic stem cell-derived cardiovascular progenitors for severe ischemic left ventricular dysfunction. J. Am. Coll. Cardiol. 71, 429–438 (2018).

    PubMed  Google Scholar 

  84. Johnson, T. D. & Christman, K. L. Injectable hydrogel therapies and their delivery strategies for treating myocardial infarction. Expert Opin. Drug Deliv. 10, 59–72 (2013).

    CAS  PubMed  Google Scholar 

  85. Liu, C. et al. Modeling human disease with induced pluripotent stem cells: from 2D to 3D and beyond development. Development 145, 156–166 (2018).

    Google Scholar 

  86. Ong, C. S. et al. Biomaterial-free three-dimensional bioprinting of cardiac tissue using human induced pluripotent stem cell derived cardiomyocytes. Sci. Rep. 7, 4566 (2017).

    PubMed  PubMed Central  Google Scholar 

  87. Adamiak, M. et al. Induced pluripotent stem cell (iPSC)-derived extracellular vesicles are safer and more effective for cardiac repair than iPSCs. Circ. Res. 122, 296–309 (2018).

    CAS  PubMed  Google Scholar 

  88. Shi, Y., Inoue, H., Wu, J. C. & Yamanaka, S. Induced pluripotent stem cell technology: a decade of progress. Nat. Rev. Drug Discov. 16, 115–130 (2017).

    CAS  PubMed  Google Scholar 

  89. Nguyen, P. K., Neofytou, E., Rhee, J. W. & Wu, J. C. Potential strategies to address the major clinical barriers facing stem cell regenerative therapy for cardiovascular disease: a review. JAMA Cardiol. 1, 953–962 (2016).

    PubMed  PubMed Central  Google Scholar 

  90. Qin, X. et al. Photoacoustic imaging of embryonic stem cell-derived cardiomyocytes in living hearts with ultrasensitive semiconducting polymer nanoparticles. Adv. Funct. Mater. 28, 1704939 (2018).

    PubMed  Google Scholar 

  91. Zhao, X. et al. Comparison of non-human primate versus human induced pluripotent stem cell-derived cardiomyocytes for treatment of myocardial infarction. Stem Cell Rep. 10, 422–435 (2018).

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by research grants from the National Institutes of Health R01 HL126527, R01 HL133272 and R24 HL117756, American Heart Association 17MERIT33610009 (to J.C.W.), and iHeart Research Dorothy Dee & Marjorie Helene Boring Trust Award (to A.Z.).

Author information

Authors and Affiliations

Authors

Contributions

H.C. and J.C.W. conceptualized the outline and contents of the article. H.C. and A.Z. participated in the researching and writing for the article, and J.C.W. reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Joseph C. Wu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Zhang, A. & Wu, J.C. Harnessing cell pluripotency for cardiovascular regenerative medicine. Nat Biomed Eng 2, 392–398 (2018). https://doi.org/10.1038/s41551-018-0244-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41551-018-0244-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing