Mechanically induced development and maturation of human intestinal organoids in vivo

Abstract

The natural ability of stem cells to self-organize into functional tissue has been harnessed for the production of functional human intestinal organoids. Although dynamic mechanical forces play a central role in intestinal development and morphogenesis, conventional methods for the generation of intestinal organoids have relied solely on biological factors. Here, we show that the incorporation of uniaxial strain, using compressed nitinol springs, in human intestinal organoids transplanted into the mesentery of mice induces growth and maturation of the organoids. Assessment of morphometric parameters, transcriptome profiling and functional assays of the strain-exposed tissue revealed higher similarities to native human intestine, with regard to tissue size and complexity, and muscle tone. Our findings suggest that the incorporation of physiologically relevant mechanical cues during the development of human intestinal tissue enhances its maturation and enterogenesis.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Transplantation of springs into tHIOs.
Fig. 2: tHIO + S samples exhibit increased morphological characteristics.
Fig. 3: Transcriptionally, tHIO + S samples are matured beyond tHIO.
Fig. 4: tHIO + S samples display a shift in proliferation and expansion of the stem compartment.
Fig. 5: Strain’s impact on secretory lineages.
Fig. 6: Epithelial integrity is retained and function improved in tHIO + S.
Fig. 7: Muscle function is improved in tHIO + S.

References

  1. 1.

    Wells, J. M. & Spence, J. R. How to make an intestine. Development 141, 752–760 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Spence, J. R. et al. Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature 470, 105–109 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    McCracken, K. W., Howell, J. C., Wells, J. M. & Spence, J. R. Generating human intestinal tissue from pluripotent stem cells in vitro. Nat. Protoc. 6, 1920–1928 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Watson, C. L. et al. An in vivo model of human small intestine using pluripotent stem cells. Nat. Med. 20, 1310–1314 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Workman, M. J. et al. Engineered human pluripotent-stem-cell-derived intestinal tissues with a functional enteric nervous system. Nat. Med. 23, 49–59 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Finkbeiner, S. R. et al. Transcriptome-wide analysis reveals hallmarks of human intestine development and maturation in vitro and in vivoStem Cell Reports 4, 1140–1155 (2015).

    Article  CAS  Google Scholar 

  7. 7.

    Dedhia, P. H., Bertaux-Skeirik, N., Zavros, Y. & Spence, J. R. Organoid models of human gastrointestinal development and disease. Gastroenterology 150, 1098–1112 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Yu, H. et al. The contributions of human mini-intestines to the study of intestinal physiology and pathophysiology. Annu. Rev. Physiol. 79, 291–312 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Nelson, C. M. On buckling morphogenesis. J. Biomech. Eng. 138, 021005 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Kurpios, N. A. et al. The direction of gut looping is established by changes in the extracellular matrix and in cell:cell adhesion. Proc. Natl Acad. Sci. USA 105, 8499–8506 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Shyer, A. E. et al. Villification: how the gut gets its villi. Science 342, 212–218 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Shyer, A. E., Huycke, T. R., Lee, C., Mahadevan, L. & Tabin, C. J. Bending gradients: how the intestinal stem cell gets its home. Cell 161, 569–580 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Savin, T. et al. On the growth and form of the gut. Nature 476, 57–62 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Stark, R., Panduranga, M., Carman, G. & Dunn, J. C. Development of an endoluminal intestinal lengthening capsule. J. Pediatr. Surg. 47, 136–141 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Rouch, J. D. et al. Scalability of an endoluminal spring for distraction enterogenesis. J. Pediatr. Surg. 51, 1988–1992 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Demehri, F. R. et al. Development of an endoluminal intestinal attachment for a clinically applicable distraction enterogenesis device. J. Pediatr. Surg. 51, 101–106 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Demehri, F. R., Freeman, J. J., Fukatsu, Y., Luntz, J. & Teitelbaum, D. H. Development of an endoluminal intestinal lengthening device using a geometric intestinal attachment approach. Surgery 158, 802–811 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Luntz, J., Brei, D., Teitelbaum, D. & Spencer, A. Mechanical extension implants for short-bowel syndrome. Proc. SPIE Int. Soc. Opt. Eng. 6173, 617309 (2006).

    PubMed  PubMed Central  Google Scholar 

  19. 19.

    Allard, J. et al. Immunohistochemical toolkit for tracking and quantifying xenotransplanted human stem cells. Regen. Med. 9, 437–452 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Shekherdimian, S., Panduranga, M. K., Carman, G. P. & Dunn, J. C. The feasibility of using an endoluminal device for intestinal lengthening. J. Pediatr. Surg. 45, 1575–1580 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Marsh, M. N. & Swift, J. A. A study of the small intestinal mucosa using the scanning electron microscope. Gut 10, 940–949 (1969).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Hooton, D., Lentle, R., Monro, J., Wickham, M. & Simpson, R. The secretion and action of brush border enzymes in the mammalian small intestine. Rev. Physiol. Biochem. Pharmacol. 168, 59–118 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Clarke, L. L. A guide to Ussing chamber studies of mouse intestine. Am. J. Physiol. Gastrointest. Liver Physiol. 296, G1151–G1166 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Gomez-Pinilla, P. J. et al. Ano1 is a selective marker of interstitial cells of Cajal in the human and mouse gastrointestinal tract. Am. J. Physiol. Gastrointest. Liver Physiol. 296, G1370–G1381 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Mammoto, A., Mammoto, T. & Ingber, D. E. Mechanosensitive mechanisms in transcriptional regulation. J. Cell Sci. 125, 3061–3073 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Burn, S. F. & Hill, R. E. Left–right asymmetry in gut development: what happens next? Bioessays 31, 1026–1037 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Sherwood, R. I., Chen, T. Y. & Melton, D. A. Transcriptional dynamics of endodermal organ formation. Dev. Dyn. 238, 29–42 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Zorn, A. M. & Wells, J. M. Vertebrate endoderm development and organ formation. Annu. Rev. Cell Dev. Biol. 25, 221–251 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Spence, J. R., Lauf, R. & Shroyer, N. F. Vertebrate intestinal endoderm development. Dev. Dyn. 240, 501–520 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Shahbazi, M. N. et al. Self-organization of the human embryo in the absence of maternal tissues. Nat. Cell Biol. 18, 700–708 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Soffers, J. H. M., Hikspoors, J. P. J. M., Mekonen, H. K., Koehler, S. E. & Lamers, W. H.The growth pattern of the human intestine and its mesentery. BMC Dev. Biol. 15, 31 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Tran, K., Brun, R. & Kuo, B. Evaluation of regional and whole gut motility using the wireless motility capsule: relevance in clinical practice. Ther. Adv. Gastroenterol. 5, 249–260 (2012).

    Article  Google Scholar 

  33. 33.

    Engmann, J. & Burbidge, A. S. Fluid mechanics of eating, swallowing and digestion—overview and perspectives. Food Funct. 4, 443–447 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Wieck, M. M. et al. Prolonged absence of mechanoluminal stimulation in human intestine alters the transcriptome and intestinal stem cell niche. Cell Mol. Gastroenterol. Hepatol. 3, 367.e1–388.e1 (2017).

    Article  Google Scholar 

  35. 35.

    Terry, B. S., Lyle, A. B., Schoen, J. A. & Rentschler, M. E. Preliminary mechanical characterization of the small bowel for in vivo robotic mobility. J. Biomech. Eng. 133, 091010 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Gregersen, H., Kassab, G. S. & Fung, Y. C. The zero-stress state of the gastrointestinal tract: biomechanical and functional implications. Dig. Dis. Sci. 45, 2271–2281 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Low, L. A. & Tagle, D. A.Organs-on-chips: progress, challenges, and future directions. Exp. Biol. Med. (Maywood) 242, 1573–1578 (2017).

    Article  CAS  Google Scholar 

  38. 38.

    Christoffersson, J., van Noort, D. V. & Mandenius, C. F.Developing organ-on-a-chip concepts using bio-mechatronic design methodology. Biofabrication 9, 025023 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Sato, T. & Clevers, H.SnapShot: growing organoids from stem cells. Cell 161, 1700.e1 (2015).

    Article  CAS  Google Scholar 

  40. 40.

    McCracken, K. W. et al. Modelling human development and disease in pluripotent stem-cell-derived gastric organoids. Nature 516, 400–404 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Grapin-Botton, A. Three-dimensional pancreas organogenesis models. Diabetes Obes. Metab. 18, 33–40 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Mahe, M. M., Brown, N. E., Poling, H. M. & Helmrath, M. A. In vivo model of small intestine. Methods Mol. Biol. 1597, 229–245 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Giles, D. A. et al. Thermoneutral housing exacerbates nonalcoholic fatty liver disease in mice and allows for sex-independent disease modeling. Nat. Med. 23, 829–838 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Trapnell, C. et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28, 511–515 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Roberts, A., Pimentel, H., Trapnell, C. & Pachter, L. Identification of novel transcripts in annotated genomes using RNA-Seq. Bioinformatics 27, 2325–2329 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Roberts, A., Trapnell, C., Donaghey, J., Rinn, J. L. & Pachter, L. Improving RNA-Seq expression estimates by correcting for fragment bias. Genome Biol. 12, R22 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Hsu, F. et al. The UCSC known genes. Bioinformatics 22, 1036–1046 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-Seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Kim, D., Langmead, B. & Salzberg, S. L. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12, 357–360 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Marini, F. pcaExplorer: Interactive Visualization of RNA-Seq Data Using a Principal Components Approach R package version 2.3.0. (2017).

Download references

Acknowledgements

The authors thank G. L. Keller and Veterinary Services staff for support in completing the animal work, J. M. Kofron for kind assistance with the IVIS Spectrum microCT imaging and B. Donnelly for assistance with the protein work. This work was funded in part by NIH grants P30 DK078392 (DHC Pilot and Feasibility Award to M.M.M.; DNA sequencing and iPSCs core facilities) and NIH NIDKK grant 1K99DK110414-02 (to M.M.M.), as well as an Athena Blackburn Research Scholar Award in neuroenteric diseases from the American Gastroenterology Association (to M.M.M.) and a ‘New Team’ grant (BOGUS to M.M.M.) from the Bioregate Regenerative Medicine Cluster, University of Nantes and Pays de la Loire Region. The Dunn, Helmrath and Wells laboratories are members of the Intestinal Stem Cell Consortium, supported by NIDDK and NIAID (U01DK103117 to M.A.H.). This research was also supported in part by the Cincinnati Children’s Research Foundation and the Cincinnati Biobank, as well as the Better Outcomes for Children Biorepository.

Author information

Affiliations

Authors

Contributions

H.M.P. and M.M.M. conceived and designed the study. H.M.P., D.W., T.A.H., M.A.H. and M.M.M. performed the experiments and collected the data. N.B. generated the HIOs. N.H. and J.C.Y.D. manufactured the springs. H.M.P., D.W., S.C. and M.M.M. analysed the data. H.M.P., M.B., S.P.H., J.M.W., M.A.H. and M.M.M. interpreted the experimental findings. H.M.P. and M.M.M. prepared the figures and drafted the manuscript. H.M.P., S.P.H., J.M.W., M.A.H. and M.M.M. made critical revisions to the manuscript. All authors approved the final version of the manuscript.

Corresponding author

Correspondence to Maxime M. Mahe.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary methods, figures and tables.

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Poling, H.M., Wu, D., Brown, N. et al. Mechanically induced development and maturation of human intestinal organoids in vivo. Nat Biomed Eng 2, 429–442 (2018). https://doi.org/10.1038/s41551-018-0243-9

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing