Rational design of silicon structures for optically controlled multiscale biointerfaces

Abstract

Silicon-based materials have been widely used in biological applications. However, remotely controlled and interconnect-free silicon configurations have been rarely explored, because of limited fundamental understanding of the complex physicochemical processes that occur at interfaces between silicon and biological materials. Here, we describe rational design principles, guided by biology, for establishing intracellular, intercellular and extracellular silicon-based interfaces, where the silicon and the biological targets have matched properties. We focused on light-induced processes at these interfaces, and developed a set of matrices to quantify and differentiate the capacitive, Faradaic and thermal outputs from about 30 different silicon materials in saline. We show that these interfaces are useful for the light-controlled non-genetic modulation of intracellular calcium dynamics, of cytoskeletal structures and transport, of cellular excitability, of neurotransmitter release from brain slices and of brain activity in vivo.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Si structures for multiscale biointerfaces.
Fig. 2: Photoresponses of Si materials.
Fig. 3: Summary of individual photoresponses from 16 selected Si structures.
Fig. 4: Si nanowire-enabled intracellular stimulation interfaces.
Fig. 5: Flexible and distributed silicon mesh for optically controlled extracellular neuromodulation.

References

  1. 1.

    Viventi, J. et al. Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo. Nat. Neurosci. 14, 1599–1605 (2011).

    CAS  Article  Google Scholar 

  2. 2.

    Tian, B., Cohen-Karni, T., Qing, Q., Duan, X., Xie, P. & Lieber, C. M. Three-dimensional, flexible nanoscale field-effect transistors as localized bioprobes. Science 329, 830–834 (2010).

    CAS  Article  Google Scholar 

  3. 3.

    Liu, J. et al. Syringe-injectable electronics. Nat. Nanotech. 10, 629–636 (2015).

    CAS  Article  Google Scholar 

  4. 4.

    Chiappini, C. et al. Biodegradable silicon nanoneedles delivering nucleic acids intracellularly induce localized in vivo neovascularization. Nat. Mater. 14, 532–539 (2015).

    CAS  Article  Google Scholar 

  5. 5.

    Tian, B. et al. Macroporous nanowire nanoelectronic scaffolds for synthetic tissues. Nat. Mater. 11, 986–994 (2012).

    CAS  Article  Google Scholar 

  6. 6.

    Fang, H. et al. Capacitively coupled arrays of multiplexed flexible silicon transistors for long-term cardiac electrophysiology. Nat. Biomed. Eng. 1, 0038 (2017).

    Article  Google Scholar 

  7. 7.

    Colicos, M. A., Collins, B. E., Sailor, M. J. & Goda, Y. Remodeling of synaptic actin induced by photoconductive stimulation. Cell 107, 605–616 (2001).

    CAS  Article  Google Scholar 

  8. 8.

    Tee, B. C. et al. A skin-inspired organic digital mechanoreceptor. Science 350, 313–316 (2015).

    CAS  Article  Google Scholar 

  9. 9.

    Khodagholy, D. et al. NeuroGrid: recording action potentials from the surface of the brain. Nat. Neurosci. 18, 310–315 (2015).

    CAS  Article  Google Scholar 

  10. 10.

    Fu, T. M. et al. Stable long-term chronic brain mapping at the single-neuron level. Nat. Methods 13, 875–882 (2016).

    CAS  Article  Google Scholar 

  11. 11.

    Chortos, A., Liu, J. & Bao, Z. Pursuing prosthetic electronic skin. Nat. Mater. 15, 937–950 (2016).

    CAS  Article  Google Scholar 

  12. 12.

    Someya, T., Bao, Z. & Malliaras, G. G. The rise of plastic bioelectronics. Nature 540, 379–385 (2016).

    CAS  Article  Google Scholar 

  13. 13.

    Chiappini, C. et al. Biodegradable nanoneedles for localized delivery of nanoparticles in vivo: exploring the biointerface. ACS Nano 9, 5500–5509 (2015).

    CAS  Article  Google Scholar 

  14. 14.

    Zimmerman, J. F. et al. Free-standing kinked silicon nanowires for probing inter- and intracellular force dynamics. Nano Lett. 15, 5492–5498 (2015).

    CAS  Article  Google Scholar 

  15. 15.

    Chu, B., Burnett, W., Chung, J. W. & Bao, Z. Bring on the bodyNET. Nature 549, 328–330 (2017).

    CAS  Article  Google Scholar 

  16. 16.

    Sakimoto, K. K., Wong, A. B. & Yang, P. Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production. Science 351, 74–77 (2016).

    CAS  Article  Google Scholar 

  17. 17.

    Liu, C., Colon, B. C., Ziesack, M., Silver, P. A. & Nocera, D. G. Water splitting-biosynthetic system with CO2 reduction efficiencies exceeding photosynthesis. Science 352, 1210–1213 (2016).

    CAS  Article  Google Scholar 

  18. 18.

    Chen, R., Romero, G., Christiansen, M. G., Mohr, A. & Anikeeva, P. Wireless magnetothermal deep brain stimulation. Science 347, 1477–1480 (2015).

    CAS  Article  Google Scholar 

  19. 19.

    Seo, D. et al. Wireless recording in the peripheral nervous system with ultrasonic neural dust. Neuron 91, 529–539 (2016).

    CAS  Article  Google Scholar 

  20. 20.

    Nadeau, P. et al. Prolonged energy harvesting for ingestible devices. Nat. Biomed. Eng. 1, 0022 (2017).

    Article  Google Scholar 

  21. 21.

    Jiang, Y. et al. Heterogeneous silicon mesostructures for lipid-supported bioelectric interfaces. Nat. Mater. 15, 1023–1030 (2016).

    CAS  Article  Google Scholar 

  22. 22.

    Grossman, N. et al. Noninvasive deep brain stimulation via temporally interfering electric fields. Cell 169, 1029–1041 (2017).

    CAS  Article  Google Scholar 

  23. 23.

    Dagdeviren, C. et al. Flexible piezoelectric devices for gastrointestinal motility sensing. Nat. Biomed. Eng. 1, 807–817 (2017).

    Article  Google Scholar 

  24. 24.

    Zimmerman, J. F. et al. Cellular uptake and dynamics of unlabeled freestanding silicon nanowires. Sci. Adv. 2, e1601039 (2016).

    Article  Google Scholar 

  25. 25.

    Dalby, M. J., Gadegaard, N. & Oreffo, R. O. Harnessing nanotopography and integrin–matrix interactions to influence stem cell fate. Nat. Mater. 13, 558–569 (2014).

    CAS  Article  Google Scholar 

  26. 26.

    Tian, B. et al. Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 449, 885–889 (2007).

    CAS  Article  Google Scholar 

  27. 27.

    Ghezzi, D. et al. A polymer optoelectronic interface restores light sensitivity in blind rat retinas. Nat. Photon. 7, 400–406 (2013).

    CAS  Article  Google Scholar 

  28. 28.

    Walter, M. G. et al. Solar water splitting cells. Chem. Rev. 110, 6446–6473 (2010).

    CAS  Article  Google Scholar 

  29. 29.

    Kang, D. et al. Electrochemical synthesis of photoelectrodes and catalysts for use in solar water splitting. Chem. Rev. 115, 12839–12887 (2015).

    CAS  Article  Google Scholar 

  30. 30.

    Merrill, D. R., Bikson, M. & Jefferys, J. G. Electrical stimulation of excitable tissue: design of efficacious and safe protocols. J. Neurosci. Methods 141, 171–198 (2005).

    Article  Google Scholar 

  31. 31.

    Ziegenfuss, J. S. et al. Draper-dependent glial phagocytic activity is mediated by Src and Syk family kinase signalling. Nature 453, 935–939 (2008).

    CAS  Article  Google Scholar 

  32. 32.

    Yoon, J., Park, J., Choi, M., Choi, W. J. & Choi, C. Application of femtosecond-pulsed lasers for direct optical manipulation of biological functions. Ann. Phys. 525, 205–214 (2013).

    CAS  Article  Google Scholar 

  33. 33.

    White, J. A., Blackmore, P. F., Schoenbach, K. H. & Beebe, S. J. Stimulation of capacitative calcium entry in HL-60 cells by nanosecond pulsed electric fields. J. Biol. Chem. 279, 22964–22972 (2004).

    CAS  Article  Google Scholar 

  34. 34.

    Hua, W., Young, E. C., Fleming, M. L. & Gelles, J. Coupling of kinesin steps to ATP hydrolysis. Nature 388, 390–393 (1997).

    CAS  Article  Google Scholar 

  35. 35.

    Stout, C. E., Costantin, J. L., Naus, C. C. & Charles, A. C. Intercellular calcium signaling in astrocytes via ATP release through connexin hemichannels. J. Biol. Chem. 277, 10482–10488 (2002).

    CAS  Article  Google Scholar 

  36. 36.

    Guthrie, P. B., Knappenberger, J., Segal, M., Bennett, M. V., Charles, A. C. & Kater, S. B. ATP released from astrocytes mediates glial calcium waves. J. Neurosci. 19, 520–528 (1999).

    CAS  Article  Google Scholar 

  37. 37.

    Chen, H. X. & Diebold, G. Chemical generation of acoustic waves: a giant photoacoustic effect. Science 270, 963–966 (1995).

    CAS  Article  Google Scholar 

  38. 38.

    Tang-Schomer, M. D., Patel, A. R., Baas, P. W. & Smith, D. H. Mechanical breaking of microtubules in axons during dynamic stretch injury underlies delayed elasticity, microtubule disassembly, and axon degeneration. FASEB J. 24, 1401–1410 (2010).

    CAS  Article  Google Scholar 

  39. 39.

    Maya-Vetencourt, J. F. et al. A fully organic retinal prosthesis restores vision in a rat model of degenerative blindness. Nat. Mater. 16, 681–689 (2017).

    CAS  Article  Google Scholar 

  40. 40.

    Ghezzi, D. et al. A hybrid bioorganic interface for neuronal photoactivation. Nat. Commun. 2, 166 (2011).

    Article  Google Scholar 

  41. 41.

    Lorach, H. et al. Photovoltaic restoration of sight with high visual acuity. Nat. Med. 21, 476–482 (2015).

    CAS  Article  Google Scholar 

  42. 42.

    Katz, L. C. & Dalva, M. B. Scanning laser photostimulation: a new approach for analyzing brain circuits. J. Neurosci. Methods 54, 205–218 (1994).

    CAS  Article  Google Scholar 

  43. 43.

    Yamawaki, N., Suter, B. A., Wickersham, I. R. & Shepherd, G. M. Combining optogenetics and electrophysiology to analyze projection neuron circuits. Cold Spring Harb. Protoc. https://doi.org/10.1101/pdb.prot090084 (2016).

  44. 44.

    Paralikar, K. J., Rao, C. R. & Clement, R. S. New approaches to eliminating common-noise artifacts in recordings from intracortical microelectrode arrays: inter-electrode correlation and virtual referencing. J. Neurosci. Methods 181, 27–35 (2009).

    Article  Google Scholar 

  45. 45.

    Veerabhadrappa, R. et al. Unified selective sorting approach to analyse multi-electrode extracellular data. Sci. Rep. 6, 28533 (2016).

    CAS  Article  Google Scholar 

  46. 46.

    Rossant, C. et al. Spike sorting for large, dense electrode arrays. Nat. Neurosci. 19, 634–641 (2016).

    CAS  Article  Google Scholar 

  47. 47.

    Yamawaki, N., Borges, K., Suter, B. A., Harris, K. D. & Shepherd, G. M. A genuine layer 4 in motor cortex with prototypical synaptic circuit connectivity. Elife 3, e05422 (2014).

    Article  Google Scholar 

  48. 48.

    Li, X., Yamawaki, N., Barrett, J. M., Kording, K. P. & Shepherd, G. M. G. Corticocortical signaling drives activity in a downstream area rapidly and scalably. Preprint at https://doi.org/10.1101/154914 (2017).

  49. 49.

    Tennant, K. A. et al. The organization of the forelimb representation of the C57BL/6 mouse motor cortex as defined by intracortical microstimulation and cytoarchitecture. Cereb. Cortex 21, 865–876 (2011).

    Article  Google Scholar 

  50. 50.

    Boyden, E. S., Zhang, F., Bamberg, E., Nagel, G. & Deisseroth, K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 8, 1263–1268 (2005).

    CAS  Article  Google Scholar 

  51. 51.

    Dai, J., Brooks, D. I. & Sheinberg, D. L. Optogenetic and electrical microstimulation systematically bias visuospatial choice in primates. Curr. Biol. 24, 63–69 (2014).

    Article  Google Scholar 

  52. 52.

    Stauffer, W. R. et al. Dopamine neuron-specific optogenetic stimulation in rhesus macaques. Cell 166, 1564–1571 (2016).

    CAS  Article  Google Scholar 

  53. 53.

    Chen, R., Canales, A. & Anikeeva, P. Neural recording and modulation technologies. Nat. Rev. Mater. 2, 16093 (2017).

    CAS  Article  Google Scholar 

  54. 54.

    Voyles, P. M., Grazul, J. L. & Muller, D. A. Imaging individual atoms inside crystals with ADF-STEM. Ultramicroscopy 96, 251–273 (2003).

    CAS  Article  Google Scholar 

  55. 55.

    Voyles, P. M., Muller, D. A., Grazul, J. L., Citrin, P. H. & Gossmann, H. J. Atomic-scale imaging of individual dopant atoms and clusters in highly n-type bulk Si. Nature 416, 826–829 (2002).

    CAS  Article  Google Scholar 

  56. 56.

    Suter, B. A. et al. Ephus: multipurpose data acquisition software for neuroscience experiments. Front. Neural Circuits 4, 100 (2010).

    Article  Google Scholar 

  57. 57.

    Yao, J., Liu, B. & Qin, F. Rapid temperature jump by infrared diode laser irradiation for patch-clamp studies. Biophys. J. 96, 3611–3619 (2009).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Air Force Office of Scientific Research (AFOSR FA9550-14-1-0175, FA9550-15-1-0285), the National Science Foundation (NSF CAREER, DMR-1254637; NSF MRSEC, DMR 1420709), the Searle Scholars Foundation and the National Institutes of Health (NIH NS101488, and NS061963). This work made use of the Japan Electron Optics Laboratory (JEOL) JEM-ARM200CF and JEOL JEM-3010 TEM in the Electron Microscopy Service of the Research Resources Center at the University of Illinois at Chicago (UIC). The acquisition of the UIC JEOL JEM-ARM200CF was supported by a MRI-R2 grant from the National Science Foundation (DMR-0959470). The animal imaging work conducted at the Integrated Small Animal Imaging Research Resource (iSAIRR) at the University of Chicago was supported in part by funding provided by the Virginia and D. K. Ludwig Fund for Cancer Research via the Imaging Research Institute in the Biological Sciences Division, by the University of Chicago Comprehensive Cancer Center including an NIH grant P30 CA14599, and by the Department of Radiology. Part of the schematic in Fig. 5c was generated from a three-dimensional anatomy software purchased from https://biosphera.org. The authors thank L. Yu, V. Sharapov, S. Patel, Y. Chen, Q. Guo and J. Jureller for providing technical support.

Author information

Affiliations

Authors

Contributions

Y.J. and B.T. conceived the idea and designed the experiments. Y.J. fabricated the materials/devices with assistance from J. Yi, Y.F. (affiliation 2) and R.C.S.W.; X.L., B.L. and K.G. performed the brain slice and in vivo studies; X.L. and B.L. built the instrument and developed the software for in vivo neurophysiology experiments and analyses. Y.J., X.G., E.S., R.P., J. Yue, G.F. and X.W. performed the cell studies; Y.J., J. Yi, F.S., K.K., V.N., Y.F. (affiliation 1), H.-M.T., C.-M.K., C.-T.C. and A.W.N. performed the materials and biointerfaces characterizations; Y.J. developed the photoresponse analysis matrix and performed the COMSOL simulation; Y.J., X.L., B.L. and B.T. wrote the paper, and received comments and edits from all authors; B.T. and G.M.G.S. mentored the research.

Corresponding author

Correspondence to Bozhi Tian.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary figures, tables, video captions and references.

Reporting Summary

Supplementary Video 1

Left forelimb movement triggered by the photostimulation of a Si mesh (~4 mW for 50 ms).

Supplementary Video 2

Left forelimb movement triggered by the photostimulation of a Si mesh (~5 mW for 50 ms).

Supplementary Video 3

Right forelimb movement triggered by the photostimulation of a Si mesh (~5 mW for 50 ms).

Supplementary Video 4

Right forelimb movement triggered by the photostimulation of a Si mesh (~5 mW for 100 ms).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jiang, Y., Li, X., Liu, B. et al. Rational design of silicon structures for optically controlled multiscale biointerfaces. Nat Biomed Eng 2, 508–521 (2018). https://doi.org/10.1038/s41551-018-0230-1

Download citation

Further reading

Search

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing