Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cardiac recovery via extended cell-free delivery of extracellular vesicles secreted by cardiomyocytes derived from induced pluripotent stem cells

Abstract

The ability of extracellular vesicles (EVs) to regulate a broad range of cellular processes has recently been exploited for the treatment of diseases. For example, EVs secreted by therapeutic cells injected into infarcted hearts can induce recovery through the delivery of cell-specific microRNAs. However, retention of the EVs and the therapeutic effects are short-lived. Here, we show that an engineered hydrogel patch capable of slowly releasing EVs secreted from cardiomyocytes (CMs) derived from induced pluripotent stem cells reduced arrhythmic burden, promoted ejection-fraction recovery, decreased CM apoptosis 24 h after infarction, and reduced infarct size and cell hypertrophy 4 weeks post-infarction when implanted onto infarcted rat hearts. We also show that EVs are enriched with cardiac-specific microRNAs known to modulate CM-specific processes. The extended delivery of EVs secreted from induced-pluripotent-stem-cell-derived CMs into the heart may help us to treat heart injury and to understand heart recovery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Therapeutic potential and challenges of cell- and EV-based therapies.
Fig. 2: iCMs secrete functional EVs.
Fig. 3: iCM-EVs are enriched in cardiac-specific miRNAs.
Fig. 4: Hydrogel patch sustainably released encapsulated EVs in a rat heart infarction model.
Fig. 5: iCM-EVs are non-arrhythmogenic and promote recovery of heart contractile function.
Fig. 6: iCM-EV-treatment-reduced infarct size and CM hypertrophy.
Fig. 7: iCM-EV treatment prevents apoptosis in the acutely infarcted heart.

Similar content being viewed by others

Zixuan Zhao, Xinyi Chen, … Hanry Yu

References

  1. Stastna, M. & Van Eyk, J. E. Investigating the secretome: lessons about the cells that comprise the heart. Circ. Cardiovasc. Genet. 5, o8–o18 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Wei, K. et al. Epicardial FSTL1 reconstitution regenerates the adult mammalian heart. Nature 525, 479–485 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Ohno, S. et al. Systemically injected exosomes targeted to EGFR deliver antitumor microRNA to breast cancer cells. Mol. Ther. 21, 185–191 (2013).

    Article  PubMed  CAS  Google Scholar 

  4. Raposo, G. & Stoorvogel, W. Extracellular vesicles: exosomes, microvesicles, and friends. J. Cell Biol. 200, 373–383 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Tkach, M. & Théry, C. Communication by extracellular vesicles: where we are and where we need to go. Cell 164, 1226–1232 (2016).

    Article  PubMed  CAS  Google Scholar 

  6. Lo Cicero, A., Stahl, P. D. & Raposo, G. Extracellular vesicles shuffling intercellular messages: for good or for bad. Curr. Opin. Cell Biol. 35, 69–77 (2015).

    Article  PubMed  CAS  Google Scholar 

  7. Emanueli, C., Shearn, A. I. U., Angelini, G. D. & Sahoo, S. Exosomes and exosomal miRNAs in cardiovascular protection and repair. Vasc. Pharmacol. 71, 24–30 (2015).

    Article  CAS  Google Scholar 

  8. Stoorvogel, W. Functional transfer of microRNA by exosomes. Blood 119, 646–648 (2012).

    Article  PubMed  CAS  Google Scholar 

  9. Olson, E. N. MicroRNAs as therapeutic targets and biomarkers of cardiovascular disease. Sci. Transl. Med. 6, 239ps3 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Malik, Z. A. et al. Cardiac myocyte exosomes: stability, HSP60, and proteomics. AJP Hear. Circ. Physiol. 304, H954–H965 (2013).

    Article  CAS  Google Scholar 

  11. Stamm, C. et al. Autologous bone-marrow stem-cell transplantation for myocardial regeneration. Lancet 361, 45–46 (2003).

    Article  PubMed  Google Scholar 

  12. Garbern, J. C. & Lee, R. T. Cardiac stem cell therapy and the promise of heart regeneration. Cell Stem Cell 12, 689–698 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Segers, V. F. M. & Lee, R. T. Stem-cell therapy for cardiac disease. Nature 451, 937–942 (2008).

    Article  PubMed  CAS  Google Scholar 

  14. Toma, C., Pittenger, M. F., Cahill, K. S., Byrne, B. J. & Kessler, P. D. Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation 105, 93–98 (2002).

    Article  PubMed  Google Scholar 

  15. Vrtovec, B. et al. Effects of intracoronary CD34+ stem cell transplantation in nonischemic dilated cardiomyopathy patients: 5-year follow-up. Circ. Res. 112, 165–173 (2013).

    Article  PubMed  CAS  Google Scholar 

  16. Karantalis, V. & Hare, J. M. Use of mesenchymal stem cells for therapy of cardiac disease. Circ. Res. 116, 1413–1430 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Godier-Furnémont, A. F. G. et al. Composite scaffold provides a cell delivery platform for cardiovascular repair. Proc. Natl Acad. Sci. USA 108, 7974–7979 (2011).

    Article  PubMed  Google Scholar 

  18. Gallet, R. et al. Exosomes secreted by cardiosphere-derived cells reduce scarring, attenuate adverse remodelling, and improve function in acute and chronic porcine myocardial infarction. Eur. Heart J. 38, 201–211 (2016).

    PubMed Central  Google Scholar 

  19. Khan, M. et al. Embryonic stem cell-derived exosomes promote endogenous repair mechanisms and enhance cardiac function following myocardial infarction. Circ. Res. 117, 52–64 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Bian, S. et al. Extracellular vesicles derived from human bone marrow mesenchymal stem cells promote angiogenesis in a rat myocardial infarction model. J. Mol. Med. 92, 387–397 (2014).

    Article  PubMed  CAS  Google Scholar 

  21. Mackie, A. R. et al. Sonic hedgehog-modified human CD34+ cells preserve cardiac function after acute myocardial infarction. Circ. Res. 111, 312–321 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Chong, J. J. H. et al. Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts. Nature 510, 273–277 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Laflamme, M. A. et al. Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat. Biotechnol. 25, 1015–1024 (2007).

    Article  PubMed  CAS  Google Scholar 

  24. Lee, A. S., Tang, C., Rao, M. S., Weissman, I. L. & Wu, J. C. Tumorigenicity as a clinical hurdle for pluripotent stem cell therapies. Nat. Med. 19, 998–1004 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Chong, J. J. H. et al. Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts. Nature 510, 273–277 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Serpooshan, V. & Wu, S. M. Patching up broken hearts: cardiac cell therapy gets a bioengineered boost. Cell Stem Cell 15, 671–673 (2014).

    Article  PubMed  CAS  Google Scholar 

  27. Anderson, M. E., Goldhaber, J. I., Houser, S. I., Puceat, M. & Sussman, M. A. Embryonic stem cell-derived cardiac myocytes are not ready for human trials. Circ. Res. 115, 335–338 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Waldenström, A., Gennebäck, N., Hellman, U., Ronquist, G. & Minetti, C. Cardiomyocyte microvesicles contain DNA/RNA and convey biological messages to target cells. PLoS ONE 7, e34653 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Garcia, N. A., Moncayo-Arlandi, J., Sepulveda, P. & Diez-Juan, A. Cardiomyocyte exosomes regulate glycolytic flux in endothelium by direct transfer of GLUT transporters and glycolytic enzymes. Cardiovasc. Res. 109, 397–408 (2016).

    Article  PubMed  CAS  Google Scholar 

  30. Wang, X. et al. Cardiomyocytes mediate anti-angiogenesis in type 2 diabetic rats through the exosomal transfer of miR-320 into endothelial cells. J. Mol. Cell. Cardiol. 74, 139–150 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Zhang, X. et al. Hsp20 functions as a novel cardiokine in promoting angiogenesis via activation of VEGFR2. PLoS ONE 7, e32765 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Kishore, R. & Khan, M. More than tiny sacks: stem cell exosomes as cell-free modality for cardiac repair. Circ. Res. 118, 330–343 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Chernyshev, V. S. et al. Size and shape characterization of hydrated and desiccated exosomes. Anal. Bioanal. Chem. 407, 3285–3301 (2015).

    Article  PubMed  CAS  Google Scholar 

  34. Mateescu, B. et al. Obstacles and opportunities in the functional analysis of extracellular vesicle RNA—an ISEV position paper. J. Extracell. Vesicles 6, 1286095 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Witwer, K. W. et al. Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J. Extracell. Vesicles 2, 20360 (2013).

    Article  CAS  Google Scholar 

  36. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-Seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Yang, B. et al. The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2. Nat. Med. 13, 486–491 (2007).

    Article  PubMed  CAS  Google Scholar 

  38. Tian, Y. et al. A microRNA–Hippo pathway that promotes cardiomyocyte proliferation and cardiac regeneration in mice. Sci. Transl. Med. 7, 279ra38 (2015).

    Article  PubMed  CAS  Google Scholar 

  39. Carè, A. et al. MicroRNA-133 controls cardiac hypertrophy. Nat. Med. 13, 613–618 (2007).

    Article  PubMed  CAS  Google Scholar 

  40. Lewis, B. P. et al. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15–20 (2005).

    Article  PubMed  CAS  Google Scholar 

  41. Garcia, D. M. et al. Weak seed-pairing stability and high target-site abundance decrease the proficiency of lsy-6 and other microRNAs. Nat. Struct. Mol. Biol. 18, 1139–1146 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. The Gene Ontogoly Consortium. Gene Ontology Consortium: going forward. Nucleic Acids Res. 43, D1049–D1056 (2015).

  43. Ashburner, M. et al. Gene ontology: tool for the unification of biology. Nat. Genet. 25, 25–29 (2000).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Wallace, D. G. & Rosenblatt, J. Collagen gel systems for sustained delivery and tissue engineering. Adv. Drug Deliv. Rev. 55, 1631–1649 (2003).

    Article  PubMed  CAS  Google Scholar 

  45. Protze, S. I. et al. Sinoatrial node cardiomyocytes derived from human pluripotent cells function as a biological pacemaker. Nat. Biotechnol. 35, 56–68 (2016).

    Article  PubMed  CAS  Google Scholar 

  46. Eng, G. et al. Autonomous beating rate adaptation in human stem cell-derived cardiomyocytes. Nat. Commun. 7, 10312 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Sontag, S. et al. Modelling IRF8 deficient human hematopoiesis and dendritic cell development with engineered iPS cells. Stem Cells 35, 898–908 (2017).

    Article  PubMed  CAS  Google Scholar 

  48. Chen, H.-S. V., Kim, C. & Mercola, M. Electrophysiological challenges of cell-based myocardial repair. Circulation 120, 2496–2508 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Zhu, X. et al. Comprehensive toxicity and immunogenicity studies reveal minimal effects in mice following sustained dosing of extracellular vesicles derived from HEK293T cells. J. Extracell. Vesicles 6, 1324730 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Hou, D. et al. Radiolabeled cell distribution after intramyocardial, intracoronary, and interstitial retrograde coronary venous delivery: implications for current clinical trials. Circulation 112, I150–I156 (2005).

    PubMed  Google Scholar 

  51. Seif-Naraghi, S. B. et al. Safety and efficacy of an injectable extracellular matrix hydrogel for treating myocardial infarction. Sci. Transl. Med. 5, 173ra25 (2013).

    Article  PubMed  CAS  Google Scholar 

  52. Lang, N. et al. A blood-resistant surgical glue for minimally invasive repair of vessels and heart defects. Sci. Transl. Med. 6, 218ra6 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Si-Tayeb, K. et al. Highly efficient generation of human hepatocyte-like cells from induced pluripotent stem cells. Hepatology 51, 297–305 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Ibrahim, A. G.-E., Cheng, K. & Marbán, E. Exosomes as critical agents of cardiac regeneration triggered by cell therapy. Stem Cell Rep. 2, 606–619 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Moore (Memorial Sloan Kettering Cancer Center) for making the particle-tracking instrument (NanoSight) available, and S. R. Ambati and A. Saxena (Memorial Sloan Kettering Cancer Center) for technical help. We thank Q. Li for performing animal surgeries, R. Liu and L. Zaurov for assistance with animal echocardiograms, and S. Halligan for coordinating the animal work. We thank D. Teles, N. Kim and A. Pluchinksky for assistance with the experiments. We thank B. Fine for valuable discussions on the manuscript. We gratefully acknowledge funding for this work by the NIH (HL076485, EB002520, EB17103 and GM007367), NYSTEM (C028119), the NIA (F30 AG047748) and the Lisa and Mark Schwartz Program for Reversing Heart Failure.

Author information

Authors and Affiliations

Authors

Contributions

B.L., B.W.L., G.D.P., S.H., P.A.S., V.K.T. and G.V.-N. designed the study. B.L., B.W.L., K.N., A.V., R.W., J.K., M.K., L.B. and K.B. performed the experiments. B.L., B.W.L. and J.M. analysed the data. B.L., B.W.L., P.A.S., V.K.T. and G.V.-N. wrote the manuscript.

Corresponding author

Correspondence to Gordana Vunjak-Novakovic.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary figures and tables

Reporting Summary

Supplementary Dataset

Exosome miRNA sequencing, miRNA search targets, gene ontology, echocardiography data and correlation analysis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, B., Lee, B.W., Nakanishi, K. et al. Cardiac recovery via extended cell-free delivery of extracellular vesicles secreted by cardiomyocytes derived from induced pluripotent stem cells. Nat Biomed Eng 2, 293–303 (2018). https://doi.org/10.1038/s41551-018-0229-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41551-018-0229-7

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research