Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Microvasculature-on-a-chip for the long-term study of endothelial barrier dysfunction and microvascular obstruction in disease

Abstract

Alterations in the mechanical properties of erythrocytes occurring in inflammatory and haematological disorders such as sickle-cell disease (SCD) and malaria often lead to increased endothelial permeability, haemolysis and microvascular obstruction. However, the associations among these pathological phenomena remain unknown. Here, we show that a perfusable, endothelialized microvasculature-on-a-chip featuring an interpenetrating-polymer-network hydrogel that recapitulates the stiffness of blood vessel intima, basement membrane self-deposition and self-healing endothelial barrier function for longer than one month enables the real-time visualization, with high spatiotemporal resolution, of microvascular obstruction and endothelial permeability under physiological flow conditions. We found that extracellular haem—a haemolytic by-product—induces delayed yet reversible endothelial permeability in a dose-dependent manner, and demonstrate that endothelial interactions with SCD or malaria-infected erythrocytes cause reversible microchannel occlusion and increased in situ endothelial permeability. The microvasculature-on-a-chip enables mechanistic insight into the endothelial barrier dysfunction associated with SCD, malaria and other inflammatory and haematological diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Engineering an IPN hydrogel-based microvasculature-on-a-chip for investigating endothelial barrier function and cellular interactions in haematological diseases.
Fig. 2: Engineered microvasculature exhibits appropriate endothelial barrier function.
Fig. 3: Visualization and tracking of the spatiotemporal dynamics of endothelial barrier dysfunction in response to perfusion of inflammatory cytokines and haemolytic by-products and the 'self-healing' of engineered endothelial barrier integrity upon removal of these agents.
Fig. 4: Interactions between sickle RBCs and endothelial cells induce microchannel occlusion and loss of endothelial barrier function in the engineered microvasculature.
Fig. 5: Interactions between iRBCs and endothelial cells are sufficient to disrupt endothelial barrier function and act synergistically with TNF-α.

Similar content being viewed by others

References

  1. Deanfield, J. E., Halcox, J. P. & Rabelink, T. J. Endothelial function and dysfunction—testing and clinical relevance. Circulation 115, 1285–1295 (2007).

    PubMed  Google Scholar 

  2. Mehta, D. & Malik, A. B. Signaling mechanisms regulating endothelial permeability. Physiol. Rev. 86, 279–367 (2006).

    CAS  PubMed  Google Scholar 

  3. Buffet, P. A. et al. The pathogenesis of Plasmodium falciparum malaria in humans: insights from splenic physiology. Blood 117, 381–392 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Faille, D. et al. Platelet–endothelial cell interactions in cerebral malaria: the end of a cordial understanding. Thromb. Haemost. 102, 1093–1102 (2009).

    CAS  PubMed  Google Scholar 

  5. Ghosh, S., Tan, F. & Ofori-Acquah, S. F. Spatiotemporal dysfunction of the vascular permeability barrier in transgenic mice with sickle cell disease. Anemia 2012, 582018 (2012).

    PubMed  PubMed Central  Google Scholar 

  6. Hebbel, R. P., Osarogiagbon, R. & Kaul, D. The endothelial biology of sickle cell disease: inflammation and a chronic vasculopathy. Microcirculation 11, 129–151 (2004).

    CAS  PubMed  Google Scholar 

  7. Frevert, U. & Nacer, A. Fatal cerebral malaria: a venous efflux problem. Front. Cell. Infect. Microbiol. 4, 155 (2014).

    PubMed  PubMed Central  Google Scholar 

  8. Ghosh, S. et al. Nonhematopoietic Nrf2 dominantly impedes adult progression of sickle cell anemia in mice. JCI Insight 1, e81090 (2016).

    PubMed Central  Google Scholar 

  9. Manwani, D. & Frenette, P. S. Vaso-occlusion in sickle cell disease: pathophysiology and novel targeted therapies. Blood 122, 3892–3898 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Storm, J. & Craig, A. G. Pathogenesis of cerebral malaria—inflammation and cytoadherence. Front. Cell. Infect. Microbiol. 4, 100 (2014).

    PubMed  PubMed Central  Google Scholar 

  11. Vercellotti, G. M. & Belcher, J. D. Not simply misshapen red cells: multimolecular and cellular events in sickle vaso-occlusion. J. Clin. Invest. 124, 1462–1465 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhang, B. Y. et al. Biodegradable scaffold with built-in vasculature for organ-on-a-chip engineering and direct surgical anastomosis. Nat. Mater. 15, 669–678 2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Johnston, I. D., McCluskey, D. K., Tan, C. K. L. & Tracey, M. C. Mechanical characterization of bulk Sylgard 184 for microfluidics and microengineering. J. Micromech. Microeng. 24, 035017 (2014).

    Google Scholar 

  14. Tsai, M. et al. In vitro modeling of the microvascular occlusion and thrombosis that occur in hematologic diseases using microfluidic technology. J. Clin. Invest. 122, 408–418 (2012).

    CAS  PubMed  Google Scholar 

  15. Huynh, J. et al. Age-related intimal stiffening enhances endothelial permeability and leukocyte transmigration. Sci. Transl. Med. 3, 112ra122 (2011).

    PubMed  PubMed Central  Google Scholar 

  16. Kohn, J. C., Lampi, M. C. & Reinhart-King, C. A. Age-related vascular stiffening: causes and consequences. Front. Genet. 6, 112 (2015).

    PubMed  PubMed Central  Google Scholar 

  17. Carrion, B. et al. Recreating the perivascular niche ex vivo using a microfluidic approach. Biotechnol. Bioeng. 107, 1020–1028 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Chen, M. B., Lamar, J. M., Li, R., Hynes, R. O. & Kamm, R. D. Elucidation of the roles of tumor integrin beta1 in the extravasation stage of the metastasis cascade. Cancer Res. 76, 2513–2524 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang, X. L. et al. Engineering anastomosis between living capillary networks and endothelial cell-lined microfluidic channels. Lab Chip 16, 282–290 (2016).

    PubMed  PubMed Central  Google Scholar 

  20. Whisler, J. A., Chen, M. B. & Kamm, R. D. Control of perfusable microvascular network morphology using a multiculture microfluidic system. Tissue Eng. C Methods 20, 543–552 (2014).

    CAS  Google Scholar 

  21. Price, G. M. et al. Effect of mechanical factors on the function of engineered human blood microvessels in microfluidic collagen gels. Biomaterials 31, 6182–6189 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Wong, K. H. K., Truslow, J. G. & Tien, J. The role of cyclic AMP in normalizing the function of engineered human blood microvessels in microfluidic collagen gels. Biomaterials 31, 4706–4714 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Nichol, J. W. et al. Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials 31, 5536–5544 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Nguyen, D. H. T. et al. Biomimetic model to reconstitute angiogenic sprouting morphogenesis in vitro. Proc. Natl Acad. Sci. USA 110, 6712–6717 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Heintz, K. A. et al. Fabrication of 3D biomimetic microfluidic networks in hydrogels. Adv. Healthc. Mater. 5, 2153–2160 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Brandenberg, N. & Lutolf, M. P. In situ patterning of microfluidic networks in 3D cell-laden hydrogels. Adv. Mater. 28, 7450–7456 (2016).

    CAS  PubMed  Google Scholar 

  27. Zheng, Y. et al. In vitro microvessels for the study of angiogenesis and thrombosis. Proc. Natl Acad. Sci. USA 109, 9342–9347 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Miller, J. S. et al. Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nat. Mater. 11, 768–774 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Linville, R. M., Boland, N. F., Covarrubias, G., Price, G. M. & Tien, J. Physical and chemical signals that promote vascularization of capillary-scale channels. Cell Mol. Bioeng. 9, 73–84 (2016).

    CAS  PubMed  Google Scholar 

  30. Chrobak, K. M., Potter, D. R. & Tien, J. Formation of perfused, functional microvascular tubes in vitro. Microvasc. Res. 71, 185–196 (2006).

    CAS  PubMed  Google Scholar 

  31. Kuijpers, A. J. et al. Cross-linking and characterisation of gelatin matrices for biomedical applications. J. Biomater. Sci. Polym. Ed. 11, 225–243 (2000).

    CAS  PubMed  Google Scholar 

  32. Yu, Q., Zhou, J. & Fung, Y. C. Neutral axis location in bending and Young’s modulus of different layers of arterial wall. Am. J. Physiol. 265, H52–H60 (1993).

    CAS  PubMed  Google Scholar 

  33. Handorf, A. M., Zhou, Y. X., Halanski, M. A. & Li, W. J. Tissue stiffness dictates development, homeostasis, and disease progression. Organogenesis 11, 1–15 (2015).

    PubMed  PubMed Central  Google Scholar 

  34. Jain, R. K. Delivery of molecular and cellular medicine to solid tumors. Adv. Drug Deliv. Rev. 46, 149–168 (2001).

    CAS  PubMed  Google Scholar 

  35. Warkentin, T. E., Moore, J. C., Anand, S. S., Lonn, E. M. & Morgan, D. G. Gastrointestinal bleeding, angiodysplasia, cardiovascular disease, and acquired von Willebrand syndrome. Transfus. Med. Rev. 17, 272–286 (2003).

    PubMed  Google Scholar 

  36. Giannotta, M., Trani, M. & Dejana, E. VE–cadherin and endothelial adherens junctions: active guardians of vascular integrity. Dev. Cell 26, 441–454 (2013).

    CAS  PubMed  Google Scholar 

  37. Yuan, W., Lv, Y., Zeng, M. & Fu, B. M. Non-invasive measurement of solute permeability in cerebral microvessels of the rat. Microvasc. Res. 77, 166–173 (2009).

    CAS  PubMed  Google Scholar 

  38. Zhang, D. C., Xu, C. L., Manwani, D. & Frenette, P. S. Neutrophils, platelets, and inflammatory pathways at the nexus of sickle cell disease pathophysiology. Blood 127, 801–809 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Gimenez, F., Barraud de Lagerie, S., Fernandez, C., Pino, P. & Mazier, D. Tumor necrosis factor alpha in the pathogenesis of cerebral malaria. Cell Mol. Life Sci. 60, 1623–1635 (2003).

    CAS  PubMed  Google Scholar 

  40. Chang, J. et al. GMI-1070, a novel pan-selectin antagonist, reverses acute vascular occlusions in sickle cell mice. Blood 116, 1779–1786 (2010).

    PubMed  PubMed Central  Google Scholar 

  41. Yao, L. et al. Divergent inducible expression of P-selectin and E-selectin in mice and primates. Blood 94, 3820–3828 (1999).

    CAS  PubMed  Google Scholar 

  42. Martinelli, R. et al. Release of cellular tension signals self-restorative ventral lamellipodia to heal barrier micro-wounds. J. Cell Biol. 201, 449–465 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Schaer, D. J., Buehler, P. W., Alayash, A. I., Belcher, J. D. & Vercellotti, G. M. Hemolysis and free hemoglobin revisited: exploring hemoglobin and hemin scavengers as a novel class of therapeutic proteins. Blood 121, 1276–1284 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Belcher, J. D. et al. Heme triggers TLR4 signaling leading to endothelial cell activation and vaso-occlusion in murine sickle cell disease. Blood 123, 377–390 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Ghosh, S. et al. Extracellular hemin crisis triggers acute chest syndrome in sickle mice. J. Clin. Invest. 123, 4809–4820 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Asakura, T., Asakura, K., Obata, K., Mattiello, J. & Ballas, S. K. Blood samples collected under venous oxygen pressure from patients with sickle cell disease contain a significant number of a new type of reversibly sickled cells: constancy of the percentage of sickled cells in individual patients during steady state. Am. J. Hematol. 80, 249–256 (2005).

    PubMed  Google Scholar 

  47. Byun, H. et al. Optical measurement of biomechanical properties of individual erythrocytes from a sickle cell patient. Acta Biomater. 8, 4130–4138 (2012).

    PubMed  PubMed Central  Google Scholar 

  48. Lu, X. et al. The measurement of shear modulus and membrane surface viscosity of RBC membrane with Ektacytometry: a new technique. Math. Biosci. 209, 190–204 (2007).

    Google Scholar 

  49. Bernabeu, M. et al. Severe adult malaria is associated with specific PfEMP1 adhesion types and high parasite biomass. Proc. Natl Acad. Sci. USA 113, E3270–E3279 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Turner, L. et al. Severe malaria is associated with parasite binding to endothelial protein C receptor. Nature 498, 502–505 2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Yeh, Y. T. et al. Matrix stiffness regulates endothelial cell proliferation through septin 9. PLoS ONE 7, e46889 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Sack, K. D., Teran, M. & Nugent, M. A. Extracellular matrix stiffness controls VEGF signaling and processing in endothelial cells. J. Cell. Physiol. 231, 2026–2039 (2016).

    CAS  PubMed  Google Scholar 

  53. Hayashi, A. & Kanzaki, T. Swelling of agarose gel and its related changes. Food Hydrocoll. 1, 317–325 (1987).

    CAS  Google Scholar 

  54. Qiu, Y. et al. Platelet mechanosensing of substrate stiffness during clot formation mediates adhesion, spreading, and activation. Proc. Natl Acad. Sci. USA 111, 14430–14435 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Wang, C., Lu, H. & Schwartz, M. A. A novel in vitro flow system for changing flow direction on endothelial cells. J. Biomech. 45, 1212–1218 (2012).

    PubMed  PubMed Central  Google Scholar 

  56. Price, G. M. & Tien, J. Methods for forming human microvascular tubes in vitro and measuring their macromolecular permeability. Methods Mol. Biol. 671, 281–293 (2011).

    CAS  PubMed  Google Scholar 

  57. Yuan, F., Leunig, M., Berk, D. A. & Jain, R. K. Microvascular permeability of albumin, vascular surface area, and vascular volume measured in human adenocarcinoma LS174T using dorsal chamber in SCID mice. Microvasc. Res. 45, 269–289 (1993).

    CAS  PubMed  Google Scholar 

  58. Yuan, Y., Chilian, W. M., Granger, H. J. & Zawieja, D. C. Permeability to albumin in isolated coronary venules. Am. J. Physiol. 265, H543–H552 (1993).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was performed in part at the Georgia Tech Institute for Electronics and Nanotechnology (a member of the National Nanotechnology Coordinated Infrastructure, which is supported by the National Science Foundation (grant ECCS-1542174)). We acknowledge the clinical research personnel at Emory University and the Children’s Healthcare of Atlanta who helped to obtain samples, and the patients for donating blood. We acknowledge D. Archer and L. A. Brown for valuable discussions. We acknowledge the rest of the Lam Lab for technical support and suggestions. Financial support was provided by National Science Foundation CAREER Award 1150235 (to W.A.L.), National Institutes of Health grants U01HL117721 (to S.F.O.-A., C.H.J. and W.A.L.), U54HL112309 (to W.A.L.) and R01HL121264 (to W.A.L.), and the National Institute for Neurological Disorders and Strokes grant R21NS085382 (to T.J.L.).

Author information

Authors and Affiliations

Authors

Contributions

Y.Q. and W.A.L. designed the device. Y.Q., W.A.L., S.F.O.-A., C.H.J. and T.J.L. conceived and designed the project. Y.Q., B.A., Y.S., C.E.H., R.T., P.N.M., R.G.M. and J.C.C. performed the experimental work. Y.Q., W.A.L., S.F.O.-A., C.H.J. and T.J.L. analysed the data. Y.Q., W.A.L., S.F.O.-A., C.H.J., T.J.L., P.N.M. and J.C.C. wrote the manuscript. All authors discussed the results.

Corresponding author

Correspondence to Wilbur A. Lam.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary figures, tables and video captions.

Reporting Summary

Supplementary Video 1

3D rendering of confocal microscopy immunostaining images of the adherens-junction protein VE-cadherin in the IPN-hydrogel-based endothelialized microfluidic system.

Supplementary Video 2

Diffusion of BSA-AF594 from acellular (non-endothelialized) microchannels can be used as a positive control to measure permeability.

Supplementary Video 3

Perfused BSA-AF594 was maintained in the ‘vascular’ space of the endothelialized microchannels during the permeability assay.

Supplementary Video 4

Perfusion of RBCs isolated from the sickle-cell disease patients with lower percentages of ISCs (~2.5%) into the engineered microvasculature (4-hour perfusion).

Supplementary Video 5

Perfusion of RBCs isolated from the sickle-cell disease patients with higher percentages of ISCs into the engineered microvasculature (4-hour perfusion).

Supplementary Video 6

Perfusion of malaria-infected RBCs into the engineered microvasculature (4-hour perfusion).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, Y., Ahn, B., Sakurai, Y. et al. Microvasculature-on-a-chip for the long-term study of endothelial barrier dysfunction and microvascular obstruction in disease. Nat Biomed Eng 2, 453–463 (2018). https://doi.org/10.1038/s41551-018-0224-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41551-018-0224-z

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research