Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Synthetic gene circuits for the detection, elimination and prevention of disease

Abstract

In living organisms, naturally evolved sensors that constantly monitor and process environmental cues trigger corrective actions that enable the organisms to cope with changing conditions. Such natural processes have inspired biologists to construct synthetic living sensors and signalling pathways, by repurposing naturally occurring proteins and by designing molecular building blocks de novo, for customized diagnostics and therapeutics. In particular, designer cells that employ user-defined synthetic gene circuits to survey disease biomarkers and to autonomously re-adjust unbalanced pathological states can coordinate the production of therapeutics, with controlled timing and dosage. Furthermore, tailored genetic networks operating in bacterial or human cells have led to cancer remission in experimental animal models, owing to the network’s unprecedented specificity. Other applications of designer cells in infectious, metabolic and autoimmune diseases are also being explored. In this Review, we describe the biomedical applications of synthetic gene circuits in major disease areas, and discuss how the first genetically engineered devices developed on the basis of synthetic-biology principles made the leap from the laboratory to the clinic.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Development process for gene circuits addressing medical conditions.
Fig. 2: Diagnostic circuits for detecting disease.
Fig. 3: Treating disease with therapeutic gene circuits.
Fig. 4: Genetic control networks as anti-infectives.
Fig. 5: Biocomputation to identify disease patterns.
Fig. 6: Preventive disease control by microencapsulated designer cells.

Similar content being viewed by others

References

  1. O’Neill, S. & O’Driscoll, L. Metabolic syndrome: a closer look at the growing epidemic and its associated pathologies. Obes. Rev. 16, 1–12 (2015).

    Article  PubMed  Google Scholar 

  2. de la Fuente-Nunez, C., Torres, M. D., Mojica, F. J. & Lu, T. K. Next-generation precision antimicrobials: towards personalized treatment of infectious diseases. Curr. Opin. Microbiol. 37, 95–102 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Haellman, V. & Fussenegger, M. Synthetic biology—toward therapeutic solutions. J. Mol. Biol. 428, 945–962 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. Manzoni, R., Urrios, A., Velazquez-Garcia, S., de Nadal, E. & Posas, F. Synthetic biology: insights into biological computation. Integr. Biol. (Camb.) 8, 518–532 (2016).

    Article  CAS  Google Scholar 

  5. Fischbach, M. A., Bluestone, J. A. & Lim, W. A. Cell-based therapeutics: the next pillar of medicine. Sci. Transl. Med. 5, 179ps7 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Eyjolfsdottir, H. et al. Targeted delivery of nerve growth factor to the cholinergic basal forebrain of Alzheimer’s disease patients: application of a second-generation encapsulated cell biodelivery device. Alzheimers Res. Ther. 8, 30 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Porter, D. L. et al. Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia. Sci. Transl. Med. 7, 303ra139 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Cameron, D. E., Bashor, C. J. & Collins, J. J. A brief history of synthetic biology. Nat. Rev. Microbiol. 12, 381–390 (2014).

    Article  CAS  PubMed  Google Scholar 

  9. Gossen, M. & Bujard, H. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc. Natl Acad. Sci. USA 89, 5547–5551 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ausländer, S. & Fussenegger, M. From gene switches to mammalian designer cells: present and future prospects. Trends Biotechnol. 31, 155–168 (2013).

    Article  CAS  PubMed  Google Scholar 

  11. Kemmer, C. et al. A designer network coordinating bovine artificial insemination by ovulation-triggered release of implanted sperms. J. Control. Release 150, 23–29 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Schukur, L., Geering, B., Charpin-El Hamri, G. & Fussenegger, M. Implantable synthetic cytokine converter cells with AND-gate logic treat experimental psoriasis. Sci. Transl. Med. 7, 318ra201 (2015).

    Article  CAS  PubMed  Google Scholar 

  13. Geering, B. & Fussenegger, M. Synthetic immunology: modulating the human immune system. Trends Biotechnol. 33, 65–79 (2015).

    Article  CAS  PubMed  Google Scholar 

  14. Wang, H., Ye, H., Xie, M., Daoud El-Baba, M. & Fussenegger, M. Cosmetics-triggered percutaneous remote control of transgene expression in mice. Nucleic Acids Res. 43, e91 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. di Bernardo, D., Marucci, L., Menolascina, F. & Siciliano, V. Predicting synthetic gene networks. Methods Mol. Biol. 813, 57–81 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. Din, M. O. et al. Synchronized cycles of bacterial lysis for in vivo delivery. Nature 536, 81–85 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ye, H. et al. Pharmaceutically controlled designer circuit for the treatment of the metabolic syndrome. Proc. Natl Acad. Sci. USA 110, 141–146 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. Bai, P. et al. A synthetic biology-based device prevents liver injury in mice. J. Hepatol. 65, 84–94 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Danino, T. et al. Programmable probiotics for detection of cancer in urine. Sci. Transl. Med. 7, 289ra84 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Della Peruta, M. et al. Preferential targeting of disseminated liver tumors using a recombinant adeno-associated viral vector. Hum. Gene Ther. 26, 94–103 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Amir, Y. et al. Universal computing by DNA origami robots in a living animal. Nat. Nanotech. 9, 353–357 (2014).

    Article  CAS  Google Scholar 

  22. Sedlmayer, F., Jaeger, T., Jenal, U. & Fussenegger, M. Quorum-quenching human designer cells for closed-loop control of Pseudomonas aeruginosa biofilms. Nano Lett. 17, 5043–5050 (2017).

    Article  CAS  PubMed  Google Scholar 

  23. Zheng, J. H. et al. Two-step enhanced cancer immunotherapy with engineered Salmonella typhimurium secreting heterologous flagellin. Sci. Transl. Med. 9, eaak9537 (2017).

    Article  CAS  PubMed  Google Scholar 

  24. Saxena, P., Charpin-El Hamri, G., Folcher, M., Zulewski, H. & Fussenegger, M. Synthetic gene network restoring endogenous pituitary–thyroid feedback control in experimental Graves’ disease. Proc. Natl Acad. Sci. USA 113, 1244–1249 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Heng, B. C., Aubel, D. & Fussenegger, M. Prosthetic gene networks as an alternative to standard pharmacotherapies for metabolic disorders. Curr. Opin. Biotechnol. 35, 37–45 (2015).

    Article  CAS  PubMed  Google Scholar 

  26. Rössger, K., Charpin-El-Hamri, G. & Fussenegger, M. A closed-loop synthetic gene circuit for the treatment of diet-induced obesity in mice. Nat. Commun. 4, 2825 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. Maude, S. L. et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N. Engl. J. Med. 371, 1507–1517 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wu, C. Y., Roybal, K. T., Puchner, E. M., Onuffer, J. & Lim, W. A. Remote control of therapeutic T cells through a small molecule-gated chimeric receptor. Science 350, aab4077 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ausländer, D. et al. A synthetic multifunctional mammalian pH sensor and CO2 transgene-control device. Mol. Cell 55, 397–408 (2014).

    Article  CAS  PubMed  Google Scholar 

  30. Shao, J. et al. Smartphone-controlled optogenetically engineered cells enable semiautomatic glucose homeostasis in diabetic mice. Sci. Transl. Med. 9, eaal2298 (2017).

    Article  PubMed  Google Scholar 

  31. Kojima, R., Aubel, D. & Fussenegger, M. Novel theranostic agents for next-generation personalized medicine: small molecules, nanoparticles, and engineered mammalian cells. Curr. Opin. Chem. Biol. 28, 29–38 (2015).

    Article  CAS  PubMed  Google Scholar 

  32. Ausländer, S. & Fussenegger, M. Engineering gene circuits for mammalian cell-based applications. Cold Spring Harb. Perspect. Biol. 8, a023895 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Brophy, J. A. & Voigt, C. A. Principles of genetic circuit design. Nat. Methods 11, 508–520 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ausländer, S., Ausländer, D. & Fussenegger, M. Synthetic biology—the synthesis of biology. Angew. Chem. Int. Ed. 56, 6396–6419 (2017).

    Article  CAS  Google Scholar 

  35. Schwarz, K. A. & Leonard, J. N. Engineering cell-based therapies to interface robustly with host physiology. Adv. Drug Deliv. Rev. 105, 55–65 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zargar, A., Payne, G. F. & Bentley, W. E. A ‘bioproduction breadboard’: programming, assembling, and actuating cellular networks. Curr. Opin. Biotechnol. 36, 154–160 (2015).

    Article  CAS  PubMed  Google Scholar 

  37. Müller, M. et al. Designed cell consortia as fragrance-programmable analog-to-digital converters. Nat. Chem. Biol. 13, 309–316 (2017).

    Article  CAS  PubMed  Google Scholar 

  38. Bradley, R. W., Buck, M. & Wang, B. Tools and principles for microbial gene circuit engineering. J. Mol. Biol. 428, 862–888 (2016).

    Article  CAS  PubMed  Google Scholar 

  39. Cheng, J. K. & Alper, H. S. Transcriptomics-guided design of synthetic promoters for a mammalian system. ACS Synth. Biol. 5, 1455–1465 (2016).

    Article  CAS  PubMed  Google Scholar 

  40. Ceroni, F., Algar, R., Stan, G. B. & Ellis, T. Quantifying cellular capacity identifies gene expression designs with reduced burden. Nat. Methods 12, 415–418 (2015).

    Article  CAS  PubMed  Google Scholar 

  41. Weinberg, B. H. et al. Large-scale design of robust genetic circuits with multiple inputs and outputs for mammalian cells. Nat. Biotechnol. 35, 453–462 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Nielsen, A. A. et al. Genetic circuit design automation. Science 352, aac7341 (2016).

    Article  CAS  PubMed  Google Scholar 

  43. Matsuoka, Y., Funahashi, A., Ghosh, S. & Kitano, H. Modeling and simulation using CellDesigner. Methods Mol. Biol. 1164, 121–145 (2014).

    Article  CAS  PubMed  Google Scholar 

  44. Otero-Muras, I., Henriques, D. & Banga, J. R. SYNBADm: a tool for optimization-based automated design of synthetic gene circuits. Bioinformatics 32, 3360–3362 (2016).

    Article  CAS  PubMed  Google Scholar 

  45. Mohammadi, P., Beerenwinkel, N. & Benenson, Y. Automated design of synthetic cell classifier circuits using a two-step optimization strategy. Cell Syst. 4, 207–218.e14 (2017).

    Article  CAS  PubMed  Google Scholar 

  46. Baig, H. & Madsen, J. Simulation approach for timing analysis of genetic logic circuits. ACS Synth. Biol. 6, 1169–1179 (2017).

    Article  CAS  PubMed  Google Scholar 

  47. Kong, D. S. et al. Open-source, community-driven microfluidics with metafluidics. Nat. Biotechnol. 35, 523–529 (2017).

    Article  CAS  PubMed  Google Scholar 

  48. Gallagher, R. R., Li, Z., Lewis, A. O. & Isaacs, F. J. Rapid editing and evolution of bacterial genomes using libraries of synthetic DNA. Nat. Protoc. 9, 2301–2316 (2014).

    Article  CAS  PubMed  Google Scholar 

  49. Caliando, B. J. & Voigt, C. A. Targeted DNA degradation using a CRISPR device stably carried in the host genome. Nat. Commun. 6, 6989 (2015).

    Article  CAS  PubMed  Google Scholar 

  50. Dormitzer, P. R. et al. Synthetic generation of influenza vaccine viruses for rapid response to pandemics. Sci. Transl. Med. 5, 185ra68 (2013).

    Article  CAS  PubMed  Google Scholar 

  51. Borrero, J., Chen, Y., Dunny, G. M. & Kaznessis, Y. N. Modified lactic acid bacteria detect and inhibit multiresistant enterococci. ACS Synth. Biol. 4, 299–306 (2015).

    Article  CAS  PubMed  Google Scholar 

  52. Rajendra, Y. et al. Enhanced plasmid DNA utilization in transiently transfected CHO-DG44 cells in the presence of polar solvents. Biotechnol. Prog. 31, 1571–1578 (2015).

    Article  CAS  PubMed  Google Scholar 

  53. Weber, W. et al. Magnet-guided transduction of mammalian cells and mice using engineered magnetic lentiviral particles. J. Biotechnol. 141, 118–122 (2009).

    Article  CAS  PubMed  Google Scholar 

  54. Guzmán-Herrador, D. L. et al. DNA delivery and genomic integration into mammalian target cells through type IV A and B secretion systems of human pathogens. Front. Microbiol. 8, 1503 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Duportet, X. et al. A platform for rapid prototyping of synthetic gene networks in mammalian cells. Nucleic Acids Res. 42, 13440–13451 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ronda, C. et al. CrEdit: CRISPR mediated multi-loci gene integration in Saccharomyces cerevisiae. Microb. Cell Fact. 14, 97 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Mates, L. et al. Molecular evolution of a novel hyperactive Sleeping Beauty transposase enables robust stable gene transfer in vertebrates. Nat. Genet. 41, 753–761 (2009).

    Article  CAS  PubMed  Google Scholar 

  58. Hirsch, M. L., Wolf, S. J. & Samulski, R. J. Delivering transgenic DNA exceeding the carrying capacity of AAV vectors. Methods Mol. Biol. 1382, 21–39 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ausländer, D. et al. A designer cell-based histamine-specific human allergy profiler. Nat. Commun. 5, 4408 (2014).

    Article  CAS  PubMed  Google Scholar 

  60. Riglar, D. T. et al. Engineered bacteria can function in the mammalian gut long-term as live diagnostics of inflammation. Nat. Biotechnol. 35, 653–658 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Courbet, A., Endy, D., Renard, E., Molina, F. & Bonnet, J. Detection of pathological biomarkers in human clinical samples via amplifying genetic switches and logic gates. Sci. Transl. Med. 7, 289ra83 (2015).

    Article  CAS  PubMed  Google Scholar 

  62. Sedlmayer, F. & Fussenegger, M. Synthetic biology: a probiotic probe for inflammation. Nat. Biomed. Eng. 1, 0097 (2017).

    Article  Google Scholar 

  63. Pardee, K. et al. Rapid, low-cost detection of Zika virus using programmable biomolecular components. Cell 165, 1255–1266 (2016).

    Article  CAS  PubMed  Google Scholar 

  64. Gootenberg, J. S. et al. Nucleic acid detection with CRISPR-Cas13a/C2c2. Science 356, 438–442 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Mimee, M., Tucker, A. C., Voigt, C. A. & Lu, T. K. Programming a human commensal bacterium, Bacteroides thetaiotaomicron, to sense and respond to stimuli in the murine gut microbiota. Cell Syst. 1, 62–71 (2016).

    Article  CAS  Google Scholar 

  66. Duan, F. F., Liu, J. H. & March, J. C. Engineered commensal bacteria reprogram intestinal cells into glucose-responsive insulin-secreting cells for the treatment of diabetes. Diabetes 64, 1794–1803 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Slomovic, S., Pardee, K. & Collins, J. J. Synthetic biology devices for in vitro and in vivo diagnostics. Proc. Natl Acad. Sci. USA 112, 14429–14435 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kotula, J. W. et al. Programmable bacteria detect and record an environmental signal in the mammalian gut. Proc. Natl Acad. Sci. USA 111, 4838–4843 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Perli, S. D., Cui, C. H. & Lu, T. K. Continuous genetic recording with self-targeting CRISPR-Cas in human cells. Science 353, aag0511 (2016).

    Article  CAS  PubMed  Google Scholar 

  70. Holowko, M. B., Wang, H., Jayaraman, P. & Poh, C. L. Biosensing Vibrio cholerae with genetically engineered Escherichia coli. ACS Synth. Biol. 5, 1275–1283 (2016).

    Article  CAS  PubMed  Google Scholar 

  71. Jayaraman, P., Holowko, M. B., Yeoh, J. W., Lim, S. & Poh, C. L. Repurposing a two-component system-based biosensor for the killing of Vibrio cholerae. ACS Synth. Biol. 6, 1403–1415 (2017).

    Article  CAS  PubMed  Google Scholar 

  72. Pinero-Lambea, C., Ruano-Gallego, D. & Fernandez, L. A. Engineered bacteria as therapeutic agents. Curr. Opin. Biotechnol. 35, 94–102 (2015).

    Article  CAS  PubMed  Google Scholar 

  73. Wu, H. C. et al. Autonomous bacterial localization and gene expression based on nearby cell receptor density. Mol. Syst. Biol. 9, 636 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Maxmen, A. Living therapeutics: scientists genetically modify bacteria to deliver drugs. Nat. Med. 23, 5–7 (2017).

    Article  CAS  PubMed  Google Scholar 

  75. Limaye, S. A. et al. Phase 1b, multicenter, single blinded, placebo-controlled, sequential dose escalation study to assess the safety and tolerability of topically applied AG013 in subjects with locally advanced head and neck cancer receiving induction chemotherapy. Cancer 119, 4268–4276 (2013).

    Article  CAS  PubMed  Google Scholar 

  76. Xie, Z., Wroblewska, L., Prochazka, L., Weiss, R. & Benenson, Y. Multi-input RNAi-based logic circuit for identification of specific cancer cells. Science 333, 1307–1311 (2011).

    Article  CAS  PubMed  Google Scholar 

  77. Nissim, L. & Bar-Ziv, R. H. A tunable dual-promoter integrator for targeting of cancer cells. Mol. Syst. Biol. 6, 444 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Ehrhardt, K., Guinn, M. T., Quarton, T., Zhang, M. Q. & Bleris, L. Reconfigurable hybrid interface for molecular marker diagnostics and in-situ reporting. Biosens. Bioelectron. 74, 744–750 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Nissim, L., Perli, S. D., Fridkin, A., Perez-Pinera, P. & Lu, T. K. Multiplexed and programmable regulation of gene networks with an integrated RNA and CRISPR/Cas toolkit in human cells. Mol. Cell 54, 698–710 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Rössger, K., Charpin-El Hamri, G. & Fussenegger, M. Reward-based hypertension control by a synthetic brain-dopamine interface. Proc. Natl Acad. Sci. USA 110, 18150–18155 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Gröger, A., Kolb, R., Schäfer, R. & Klose, U. Dopamine reduction in the substantia nigra of Parkinson’s disease patients confirmed by in vivo magnetic resonance spectroscopic imaging. PLoS ONE 9, e84081 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Folcher, M. et al. Mind-controlled transgene expression by a wireless-powered optogenetic designer cell implant. Nat. Commun. 5, 5392 (2014).

    Article  CAS  PubMed  Google Scholar 

  83. Rössger, K., Charpin-El-Hamri, G. & Fussenegger, M. Bile acid-controlled transgene expression in mammalian cells and mice. Metab. Eng. 21, 81–90 (2014).

    Article  CAS  PubMed  Google Scholar 

  84. Morsut, L. et al. Engineering customized cell sensing and response behaviors using synthetic notch receptors. Cell 164, 780–791 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kawasaki, S., Fujita, Y., Nagaike, T., Tomita, K. & Saito, H. Synthetic mRNA devices that detect endogenous proteins and distinguish mammalian cells. Nucleic Acids Res. 45, e117 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kim, T., Folcher, M., Charpin-El Hamri, G. & Fussenegger, M. A synthetic cGMP-sensitive gene switch providing Viagra(®)-controlled gene expression in mammalian cells and mice. Metab. Eng. 29, 169–179 (2015).

    Article  CAS  PubMed  Google Scholar 

  87. Weber, W. et al. Conditional human VEGF-mediated vascularization in chicken embryos using a novel temperature-inducible gene regulation (TIGR) system. Nucleic Acids Res. 31, e69 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Agustín-Pavón, C. & Isalan, M. Synthetic biology and therapeutic strategies for the degenerating brain: synthetic biology approaches can transform classical cell and gene therapies, to provide new cures for neurodegenerative diseases. Bioessays 36, 979–990 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Maddalena, A., Tereshchenko, J., Bähr, M. & Kügler, S. Adeno-associated virus-mediated, mifepristone-regulated transgene expression in the brain. Mol. Ther. Nucleic Acids 2, e106 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Ausländer, S. et al. A general design strategy for protein-responsive riboswitches in mammalian cells. Nat. Methods 11, 1154–1160 (2014).

    Article  CAS  PubMed  Google Scholar 

  91. Slomovic, S. & Collins, J. J. DNA sense-and-respond protein modules for mammalian cells. Nat. Methods 12, 1085–1090 (2015).

    Article  CAS  PubMed  Google Scholar 

  92. Schwarz, K. A., Daringer, N. M., Dolberg, T. B. & Leonard, J. N. Rewiring human cellular input–output using modular extracellular sensors. Nat. Chem. Biol. 13, 202–209 (2017).

    Article  CAS  PubMed  Google Scholar 

  93. Piñero-Lambea, C. et al. Programming controlled adhesion of E. coli to target surfaces, cells, and tumors with synthetic adhesins. ACS Synth. Biol. 4, 463–473 (2015).

    Article  CAS  PubMed  Google Scholar 

  94. Roybal, K. T. et al. Precision tumor recognition by T Cells with combinatorial antigen-sensing circuits. Cell 164, 770–779 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kloss, C. C., Condomines, M., Cartellieri, M., Bachmann, M. & Sadelain, M. Combinatorial antigen recognition with balanced signaling promotes selective tumor eradication by engineered T cells. Nat. Biotechnol. 31, 71–75 (2013).

    Article  CAS  PubMed  Google Scholar 

  96. Kojima, R., Scheller, L. & Fussenegger, M. Nonimmune cells equipped with T-cell-receptor-like signaling for cancer cell ablation. Nat. Chem. Biol. 14, 42–49 (2018).

    Article  CAS  PubMed  Google Scholar 

  97. Yin, C. et al. In vivo excision of HIV-1 provirus by saCas9 and multiplex single-guide RNAs in animal models. Mol. Ther. 25, 1168–1186 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Balazs, A. B. et al. Vectored immunoprophylaxis protects humanized mice from mucosal HIV transmission. Nat. Med. 20, 296–300 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kong, W., Brovold, M., Koeneman, B. A., Clark-Curtiss, J. & Curtiss, R. Turning self-destructing Salmonella into a universal DNA vaccine delivery platform. Proc. Natl Acad. Sci. USA 109, 19414–19419 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Andries, O., Kitada, T., Bodner, K., Sanders, N. N. & Weiss, R. Synthetic biology devices and circuits for RNA-based ‘smart vaccines’: a propositional review. Expert Rev. Vaccin. 14, 313–331 (2015).

    Article  CAS  Google Scholar 

  101. Brazzoli, M. et al. Induction of broad-based immunity and protective efficacy by self-amplifying mRNA vaccines encoding influenza virus hemagglutinin. J. Virol. 90, 332–344 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Krishnamurthy, M., Moore, R. T., Rajamani, S. & Panchal, R. G. Bacterial genome engineering and synthetic biology: combating pathogens. BMC Microbiol. 16, 258 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Bikard, D. et al. Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials. Nat. Biotechnol. 32, 1146–1150 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Citorik, R. J., Mimee, M. & Lu, T. K. Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases. Nat. Biotechnol. 32, 1141–1145 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Krom, R. J., Bhargava, P., Lobritz, M. A. & Collins, J. J. Engineered phagemids for nonlytic, targeted antibacterial therapies. Nano Lett. 15, 4808–4813 (2015).

    Article  CAS  PubMed  Google Scholar 

  106. Yosef, I., Manor, M., Kiro, R. & Qimron, U. Temperate and lytic bacteriophages programmed to sensitize and kill antibiotic-resistant bacteria. Proc. Natl Acad. Sci. USA 112, 7267–7272 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Nielsen, A. A. & Voigt, C. A. Multi-input CRISPR/Cas genetic circuits that interface host regulatory networks. Mol. Syst. Biol. 10, 763 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Ando, H., Lemire, S., Pires, D. P. & Lu, T. K. Engineering modular viral scaffolds for targeted bacterial population editing. Cell Syst. 1, 187–196 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Hwang, I. Y. et al. Reprogramming microbes to be pathogen-seeking killers. ACS Synth. Biol. 3, 228–237 (2014).

    Article  CAS  PubMed  Google Scholar 

  110. Hwang, I. Y. et al. Engineered probiotic Escherichia coli can eliminate and prevent Pseudomonas aeruginosa gut infection in animal models. Nat. Commun. 8, 15028 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Gupta, S., Bram, E. E. & Weiss, R. Genetically programmable pathogen sense and destroy. ACS Synth. Biol. 2, 715–723 (2013).

    Article  CAS  PubMed  Google Scholar 

  112. Chan, C. T., Lee, J. W., Cameron, D. E., Bashor, C. J. & Collins, J. J. ‘Deadman’ and ‘Passcode’ microbial kill switches for bacterial containment. Nat. Chem. Biol. 12, 82–86 (2016).

    Article  CAS  PubMed  Google Scholar 

  113. Sedlmayer, F., Hell, D., Müller, M., Ausländer, D. & Fussenegger, M. Designer cells programming quorum-sensing interference with microbes. Nat. Commun. 9, 1822 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Smole, A., Lainšček, D., Bezeljak, U., Horvat, S. & Jerala, R. A synthetic mammalian therapeutic gene circuit for sensing and suppressing inflammation. Mol. Ther. 25, 102–119 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Qudrat, A., Mosabbir, A. A. & Truong, K. Engineered proteins program mammalian cells to target inflammatory disease sites. Cell Chem. Biol. 24, 703–711.e2 (2017).

    Article  CAS  PubMed  Google Scholar 

  116. Park, J. S. et al. Synthetic control of mammalian-cell motility by engineering chemotaxis to an orthogonal bioinert chemical signal. Proc. Natl Acad. Sci. USA 111, 5896–5901 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Mimee, M., Citorik, R. J. & Lu, T. K. Microbiome therapeutics—advances and challenges. Adv. Drug Deliv. Rev. 105, 44–54 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Chen, Z. et al. Incorporation of therapeutically modified bacteria into gut microbiota inhibits obesity. J. Clin. Invest. 124, 3391–3406 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Thompson, J. A., Oliveira, R. A., Djukovic, A., Ubeda, C. & Xavier, K. B. Manipulation of the quorum sensing signal AI-2 affects the antibiotic-treated gut microbiota. Cell Rep. 10, 1861–1871 (2015).

    Article  CAS  PubMed  Google Scholar 

  120. Duan, F. & March, J. C. Engineered bacterial communication prevents Vibrio cholerae virulence in an infant mouse model. Proc. Natl Acad. Sci. USA 107, 11260–11264 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Luo, X. et al. Distal modulation of bacterial cell–cell signalling in a synthetic ecosystem using partitioned microfluidics. Lab Chip 15, 1842–1851 (2015).

    Article  CAS  PubMed  Google Scholar 

  122. Buffie, C. G. et al. Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile. Nature 517, 205–208 (2015).

    Article  CAS  PubMed  Google Scholar 

  123. Thaiss, C. A. et al. Persistent microbiome alterations modulate the rate of post-dieting weight regain. Nature 540, 544–551 (2016).

    Article  CAS  PubMed  Google Scholar 

  124. Sheth, R. U., Cabral, V., Chen, S. P. & Wang, H. H. Manipulating bacterial communities by in situ microbiome engineering. Trends Genet. 32, 189–200 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Xie, M. et al. Beta-cell-mimetic designer cells provide closed-loop glycemic control. Science 354, 1296–1301 (2016).

    Article  CAS  PubMed  Google Scholar 

  126. Saxena, P. et al. A programmable synthetic lineage-control network that differentiates human IPSCs into glucose-sensitive insulin-secreting beta-like cells. Nat. Commun. 7, 11247 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Ye, H. et al. Self-adjusting synthetic gene circuit for correcting insulin resistance. Nat. Biomed. Eng. 1, 0005 (2017).

    Article  PubMed  Google Scholar 

  128. Müller, K. et al. A red/far-red light-responsive bi-stable toggle switch to control gene expression in mammalian cells. Nucleic Acids Res. 41, e77 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Bacchus, W. et al. Synthetic two-way communication between mammalian cells. Nat. Biotechnol. 30, 991–996 (2012).

    Article  CAS  PubMed  Google Scholar 

  130. Miki, K. et al. Efficient detection and purification of cell populations using synthetic microRNA switches. Cell Stem Cell 16, 699–711 (2015).

    Article  CAS  PubMed  Google Scholar 

  131. Kim, T., Folcher, M., Doaud-El Baba, M. & Fussenegger, M. A synthetic erectile optogenetic stimulator enabling blue-light-inducible penile erection. Angew. Chem. Int. Ed. 54, 5933–5938 (2015).

    Article  CAS  Google Scholar 

  132. Ryu, M. H., Moskvin, O. V., Siltberg-Liberles, J. & Gomelsky, M. Natural and engineered photoactivated nucleotidyl cyclases for optogenetic applications. J. Biol. Chem. 285, 41501–41508 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Rubens, J. R., Selvaggio, G. & Lu, T. K. Synthetic mixed-signal computation in living cells. Nat. Commun. 7, 11658 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Ausländer, S., Ausländer, D., Müller, M., Wieland, M. & Fussenegger, M. Programmable single-cell mammalian biocomputers. Nature 487, 123–127 (2012).

    Article  CAS  PubMed  Google Scholar 

  135. Daniel, R., Rubens, J. R., Sarpeshkar, R. & Lu, T. K. Synthetic analog computation in living cells. Nature 497, 619–623 (2013).

    Article  CAS  PubMed  Google Scholar 

  136. Prochazka, L., Angelici, B., Haefliger, B. & Benenson, Y. Highly modular bow-tie gene circuits with programmable dynamic behaviour. Nat. Commun. 5, 4729 (2014).

    Article  CAS  PubMed  Google Scholar 

  137. Wroblewska, L. et al. Mammalian synthetic circuits with RNA binding proteins for RNA-only delivery. Nat. Biotechnol. 33, 839–841 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Dastor, M. et al. A workflow for in vivo evaluation of candidate inputs and outputs for cell classifier gene circuits. ACS Synth. Biol. 7, 474–489 (2018).

    Article  CAS  PubMed  Google Scholar 

  139. Liu, Y. et al. Synthesizing AND gate genetic circuits based on CRISPR-Cas9 for identification of bladder cancer cells. Nat. Commun. 5, 5393 (2014).

    Article  CAS  PubMed  Google Scholar 

  140. Morel, M., Shtrahman, R., Rotter, V., Nissim, L. & Bar-Ziv, R. H. Cellular heterogeneity mediates inherent sensitivity–specificity tradeoff in cancer targeting by synthetic circuits. Proc. Natl Acad. Sci. USA 113, 8133–8138 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Nissim, L. et al. Synthetic RNA-based immunomodulatory gene circuits for cancer immunotherapy. Cell 171, 1138–1150.e15 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Baeumler, T. A., Ahmed, A. A. & Fulga, T. A. Engineering synthetic signaling pathways with programmable dCas9-based chimeric receptors. Cell Rep. 20, 2639–2653 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Konermann, S. et al. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 517, 583–588 (2015).

    Article  CAS  PubMed  Google Scholar 

  144. Ausländer, D. et al. Programmable full-adder computations in communicating three-dimensional cell cultures. Nat. Methods 15, 57–60 (2018).

    Article  CAS  PubMed  Google Scholar 

  145. You, M., Zhu, G., Chen, T., Donovan, M. J. & Tan, W. Programmable and multiparameter DNA-based logic platform for cancer recognition and targeted therapy. J. Am. Chem. Soc. 137, 667–674 (2015).

    Article  CAS  PubMed  Google Scholar 

  146. Green, A. A. et al. Complex cellular logic computation using ribocomputing devices. Nature 548, 117–121 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Schukur, L. & Fussenegger, M. Engineering of synthetic gene circuits for (re-)balancing physiological processes in chronic diseases. Wiley Interdiscip. Rev. Syst. Biol. Med. 8, 402–422 (2016).

    Article  CAS  PubMed  Google Scholar 

  148. Hoerner, M. & Weber, W. Molecular switches in animal cells. FEBS Lett. 586, 2084–2096 (2012).

    Article  CAS  Google Scholar 

  149. Weber, W. & Fussenegger, M. Emerging biomedical applications of synthetic biology. Nat. Rev. Genet. 13, 21–35 (2012).

    Article  CAS  Google Scholar 

  150. Xie, M., Haellman, V. & Fussenegger, M. Synthetic biology-application-oriented cell engineering. Curr. Opin. Biotechnol. 40, 139–148 (2016).

    Article  CAS  PubMed  Google Scholar 

  151. Chassin, H. et al. Sensing and responding to allergic response cytokines through a genetically encoded circuit. Nat. Commun. 8, 1101 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. A race to bring CRISPR to the clinic. EBioMedicine 19, 1 (2017).

  153. Steidler, L. et al. Biological containment of genetically modified Lactococcus lactis for intestinal delivery of human interleukin 10. Nat. Biotechnol. 21, 785–789 (2003).

    Article  CAS  PubMed  Google Scholar 

  154. Ausländer, S., Wieland, M. & Fussenegger, M. Smart medication through combination of synthetic biology and cell microencapsulation. Metab. Eng. 14, 252–260 (2012).

    Article  CAS  PubMed  Google Scholar 

  155. Quintero, D., Carrafa, J., Vincent, L. & Bermudes, D. EGFR-targeted chimeras of Pseudomonas ToxA released into the extracellular milieu by attenuated Salmonella selectively kill tumor cells. Biotechnol. Bioeng. 113, 2698–2711 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Ittig, S. J. et al. A bacterial type III secretion-based protein delivery tool for broad applications in cell biology. J. Cell Biol. 211, 913–931 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Lu, T. K. & Collins, J. J. Dispersing biofilms with engineered enzymatic bacteriophage. Proc. Natl Acad. Sci. USA 104, 11197–11202 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Cameron, D. E. & Collins, J. J. Tunable protein degradation in bacteria. Nat. Biotechnol. 32, 1276–1281 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Prasad, V. Immunotherapy: tisagenlecleucel—the first approved CAR-T-cell therapy: implications for payers and policy makers. Nat. Rev. Clin. Oncol. 15, 11–12 (2018).

    Article  PubMed  Google Scholar 

  161. Busskamp, V. et al. Rapid neurogenesis through transcriptional activation in human stem cells. Mol. Syst. Biol. 10, 760 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Roybal, K. T. et al. Engineering T cells with customized therapeutic response programs using synthetic notch receptors. Cell 167, 419–432.e16 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Klingemann, H., Boissel, L. & Toneguzzo, F. Natural killer cells for immunotherapy-advantages of the NK-92 cell line over blood NK cells. Front. Immunol. 7, 91 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Guye, P. et al. Genetically engineering self-organization of human pluripotent stem cells into a liver bud-like tissue using Gata6. Nat. Commun. 7, 10243 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Rezania, A. et al. Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells. Nat. Biotechnol. 32, 1121–1133 (2014).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank D. Fuchs, D. Sequeira, X. Pierrat and S. Ausländer for scientific advice. This work was supported by a European Research Council Advanced Grant (ProNet, no. 321381).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to writing and editing of the Review.

Corresponding author

Correspondence to Martin Fussenegger.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sedlmayer, F., Aubel, D. & Fussenegger, M. Synthetic gene circuits for the detection, elimination and prevention of disease. Nat Biomed Eng 2, 399–415 (2018). https://doi.org/10.1038/s41551-018-0215-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41551-018-0215-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing