Review Article | Published:

Synthetic gene circuits for the detection, elimination and prevention of disease

Nature Biomedical Engineeringvolume 2pages399415 (2018) | Download Citation

Abstract

In living organisms, naturally evolved sensors that constantly monitor and process environmental cues trigger corrective actions that enable the organisms to cope with changing conditions. Such natural processes have inspired biologists to construct synthetic living sensors and signalling pathways, by repurposing naturally occurring proteins and by designing molecular building blocks de novo, for customized diagnostics and therapeutics. In particular, designer cells that employ user-defined synthetic gene circuits to survey disease biomarkers and to autonomously re-adjust unbalanced pathological states can coordinate the production of therapeutics, with controlled timing and dosage. Furthermore, tailored genetic networks operating in bacterial or human cells have led to cancer remission in experimental animal models, owing to the network’s unprecedented specificity. Other applications of designer cells in infectious, metabolic and autoimmune diseases are also being explored. In this Review, we describe the biomedical applications of synthetic gene circuits in major disease areas, and discuss how the first genetically engineered devices developed on the basis of synthetic-biology principles made the leap from the laboratory to the clinic.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    O’Neill, S. & O’Driscoll, L. Metabolic syndrome: a closer look at the growing epidemic and its associated pathologies. Obes. Rev. 16, 1–12 (2015).

  2. 2.

    de la Fuente-Nunez, C., Torres, M. D., Mojica, F. J. & Lu, T. K. Next-generation precision antimicrobials: towards personalized treatment of infectious diseases. Curr. Opin. Microbiol. 37, 95–102 (2017).

  3. 3.

    Haellman, V. & Fussenegger, M. Synthetic biology—toward therapeutic solutions. J. Mol. Biol. 428, 945–962 (2016).

  4. 4.

    Manzoni, R., Urrios, A., Velazquez-Garcia, S., de Nadal, E. & Posas, F. Synthetic biology: insights into biological computation. Integr. Biol. (Camb.) 8, 518–532 (2016).

  5. 5.

    Fischbach, M. A., Bluestone, J. A. & Lim, W. A. Cell-based therapeutics: the next pillar of medicine. Sci. Transl. Med. 5, 179ps7 (2013).

  6. 6.

    Eyjolfsdottir, H. et al. Targeted delivery of nerve growth factor to the cholinergic basal forebrain of Alzheimer’s disease patients: application of a second-generation encapsulated cell biodelivery device. Alzheimers Res. Ther. 8, 30 (2016).

  7. 7.

    Porter, D. L. et al. Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia. Sci. Transl. Med. 7, 303ra139 (2015).

  8. 8.

    Cameron, D. E., Bashor, C. J. & Collins, J. J. A brief history of synthetic biology. Nat. Rev. Microbiol. 12, 381–390 (2014).

  9. 9.

    Gossen, M. & Bujard, H. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc. Natl Acad. Sci. USA 89, 5547–5551 (1992).

  10. 10.

    Ausländer, S. & Fussenegger, M. From gene switches to mammalian designer cells: present and future prospects. Trends Biotechnol. 31, 155–168 (2013).

  11. 11.

    Kemmer, C. et al. A designer network coordinating bovine artificial insemination by ovulation-triggered release of implanted sperms. J. Control. Release 150, 23–29 (2011).

  12. 12.

    Schukur, L., Geering, B., Charpin-El Hamri, G. & Fussenegger, M. Implantable synthetic cytokine converter cells with AND-gate logic treat experimental psoriasis. Sci. Transl. Med. 7, 318ra201 (2015).

  13. 13.

    Geering, B. & Fussenegger, M. Synthetic immunology: modulating the human immune system. Trends Biotechnol. 33, 65–79 (2015).

  14. 14.

    Wang, H., Ye, H., Xie, M., Daoud El-Baba, M. & Fussenegger, M. Cosmetics-triggered percutaneous remote control of transgene expression in mice. Nucleic Acids Res. 43, e91 (2015).

  15. 15.

    di Bernardo, D., Marucci, L., Menolascina, F. & Siciliano, V. Predicting synthetic gene networks. Methods Mol. Biol. 813, 57–81 (2012).

  16. 16.

    Din, M. O. et al. Synchronized cycles of bacterial lysis for in vivo delivery. Nature 536, 81–85 (2016).

  17. 17.

    Ye, H. et al. Pharmaceutically controlled designer circuit for the treatment of the metabolic syndrome. Proc. Natl Acad. Sci. USA 110, 141–146 (2013).

  18. 18.

    Bai, P. et al. A synthetic biology-based device prevents liver injury in mice. J. Hepatol. 65, 84–94 (2016).

  19. 19.

    Danino, T. et al. Programmable probiotics for detection of cancer in urine. Sci. Transl. Med. 7, 289ra84 (2015).

  20. 20.

    Della Peruta, M. et al. Preferential targeting of disseminated liver tumors using a recombinant adeno-associated viral vector. Hum. Gene Ther. 26, 94–103 (2015).

  21. 21.

    Amir, Y. et al. Universal computing by DNA origami robots in a living animal. Nat. Nanotech. 9, 353–357 (2014).

  22. 22.

    Sedlmayer, F., Jaeger, T., Jenal, U. & Fussenegger, M. Quorum-quenching human designer cells for closed-loop control of Pseudomonas aeruginosa biofilms. Nano Lett. 17, 5043–5050 (2017).

  23. 23.

    Zheng, J. H. et al. Two-step enhanced cancer immunotherapy with engineered Salmonella typhimurium secreting heterologous flagellin. Sci. Transl. Med. 9, eaak9537 (2017).

  24. 24.

    Saxena, P., Charpin-El Hamri, G., Folcher, M., Zulewski, H. & Fussenegger, M. Synthetic gene network restoring endogenous pituitary–thyroid feedback control in experimental Graves’ disease. Proc. Natl Acad. Sci. USA 113, 1244–1249 (2016).

  25. 25.

    Heng, B. C., Aubel, D. & Fussenegger, M. Prosthetic gene networks as an alternative to standard pharmacotherapies for metabolic disorders. Curr. Opin. Biotechnol. 35, 37–45 (2015).

  26. 26.

    Rössger, K., Charpin-El-Hamri, G. & Fussenegger, M. A closed-loop synthetic gene circuit for the treatment of diet-induced obesity in mice. Nat. Commun. 4, 2825 (2013).

  27. 27.

    Maude, S. L. et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N. Engl. J. Med. 371, 1507–1517 (2014).

  28. 28.

    Wu, C. Y., Roybal, K. T., Puchner, E. M., Onuffer, J. & Lim, W. A. Remote control of therapeutic T cells through a small molecule-gated chimeric receptor. Science 350, aab4077 (2015).

  29. 29.

    Ausländer, D. et al. A synthetic multifunctional mammalian pH sensor and CO2 transgene-control device. Mol. Cell 55, 397–408 (2014).

  30. 30.

    Shao, J. et al. Smartphone-controlled optogenetically engineered cells enable semiautomatic glucose homeostasis in diabetic mice. Sci. Transl. Med. 9, eaal2298 (2017).

  31. 31.

    Kojima, R., Aubel, D. & Fussenegger, M. Novel theranostic agents for next-generation personalized medicine: small molecules, nanoparticles, and engineered mammalian cells. Curr. Opin. Chem. Biol. 28, 29–38 (2015).

  32. 32.

    Ausländer, S. & Fussenegger, M. Engineering gene circuits for mammalian cell-based applications. Cold Spring Harb. Perspect. Biol. 8, a023895 (2016).

  33. 33.

    Brophy, J. A. & Voigt, C. A. Principles of genetic circuit design. Nat. Methods 11, 508–520 (2014).

  34. 34.

    Ausländer, S., Ausländer, D. & Fussenegger, M. Synthetic biology—the synthesis of biology. Angew. Chem. Int. Ed. 56, 6396–6419 (2017).

  35. 35.

    Schwarz, K. A. & Leonard, J. N. Engineering cell-based therapies to interface robustly with host physiology. Adv. Drug Deliv. Rev. 105, 55–65 (2016).

  36. 36.

    Zargar, A., Payne, G. F. & Bentley, W. E. A ‘bioproduction breadboard’: programming, assembling, and actuating cellular networks. Curr. Opin. Biotechnol. 36, 154–160 (2015).

  37. 37.

    Müller, M. et al. Designed cell consortia as fragrance-programmable analog-to-digital converters. Nat. Chem. Biol. 13, 309–316 (2017).

  38. 38.

    Bradley, R. W., Buck, M. & Wang, B. Tools and principles for microbial gene circuit engineering. J. Mol. Biol. 428, 862–888 (2016).

  39. 39.

    Cheng, J. K. & Alper, H. S. Transcriptomics-guided design of synthetic promoters for a mammalian system. ACS Synth. Biol. 5, 1455–1465 (2016).

  40. 40.

    Ceroni, F., Algar, R., Stan, G. B. & Ellis, T. Quantifying cellular capacity identifies gene expression designs with reduced burden. Nat. Methods 12, 415–418 (2015).

  41. 41.

    Weinberg, B. H. et al. Large-scale design of robust genetic circuits with multiple inputs and outputs for mammalian cells. Nat. Biotechnol. 35, 453–462 (2017).

  42. 42.

    Nielsen, A. A. et al. Genetic circuit design automation. Science 352, aac7341 (2016).

  43. 43.

    Matsuoka, Y., Funahashi, A., Ghosh, S. & Kitano, H. Modeling and simulation using CellDesigner. Methods Mol. Biol. 1164, 121–145 (2014).

  44. 44.

    Otero-Muras, I., Henriques, D. & Banga, J. R. SYNBADm: a tool for optimization-based automated design of synthetic gene circuits. Bioinformatics 32, 3360–3362 (2016).

  45. 45.

    Mohammadi, P., Beerenwinkel, N. & Benenson, Y. Automated design of synthetic cell classifier circuits using a two-step optimization strategy. Cell Syst. 4, 207–218.e14 (2017).

  46. 46.

    Baig, H. & Madsen, J. Simulation approach for timing analysis of genetic logic circuits. ACS Synth. Biol. 6, 1169–1179 (2017).

  47. 47.

    Kong, D. S. et al. Open-source, community-driven microfluidics with metafluidics. Nat. Biotechnol. 35, 523–529 (2017).

  48. 48.

    Gallagher, R. R., Li, Z., Lewis, A. O. & Isaacs, F. J. Rapid editing and evolution of bacterial genomes using libraries of synthetic DNA. Nat. Protoc. 9, 2301–2316 (2014).

  49. 49.

    Caliando, B. J. & Voigt, C. A. Targeted DNA degradation using a CRISPR device stably carried in the host genome. Nat. Commun. 6, 6989 (2015).

  50. 50.

    Dormitzer, P. R. et al. Synthetic generation of influenza vaccine viruses for rapid response to pandemics. Sci. Transl. Med. 5, 185ra68 (2013).

  51. 51.

    Borrero, J., Chen, Y., Dunny, G. M. & Kaznessis, Y. N. Modified lactic acid bacteria detect and inhibit multiresistant enterococci. ACS Synth. Biol. 4, 299–306 (2015).

  52. 52.

    Rajendra, Y. et al. Enhanced plasmid DNA utilization in transiently transfected CHO-DG44 cells in the presence of polar solvents. Biotechnol. Prog. 31, 1571–1578 (2015).

  53. 53.

    Weber, W. et al. Magnet-guided transduction of mammalian cells and mice using engineered magnetic lentiviral particles. J. Biotechnol. 141, 118–122 (2009).

  54. 54.

    Guzmán-Herrador, D. L. et al. DNA delivery and genomic integration into mammalian target cells through type IV A and B secretion systems of human pathogens. Front. Microbiol. 8, 1503 (2017).

  55. 55.

    Duportet, X. et al. A platform for rapid prototyping of synthetic gene networks in mammalian cells. Nucleic Acids Res. 42, 13440–13451 (2014).

  56. 56.

    Ronda, C. et al. CrEdit: CRISPR mediated multi-loci gene integration in Saccharomyces cerevisiae. Microb. Cell Fact. 14, 97 (2015).

  57. 57.

    Mates, L. et al. Molecular evolution of a novel hyperactive Sleeping Beauty transposase enables robust stable gene transfer in vertebrates. Nat. Genet. 41, 753–761 (2009).

  58. 58.

    Hirsch, M. L., Wolf, S. J. & Samulski, R. J. Delivering transgenic DNA exceeding the carrying capacity of AAV vectors. Methods Mol. Biol. 1382, 21–39 (2016).

  59. 59.

    Ausländer, D. et al. A designer cell-based histamine-specific human allergy profiler. Nat. Commun. 5, 4408 (2014).

  60. 60.

    Riglar, D. T. et al. Engineered bacteria can function in the mammalian gut long-term as live diagnostics of inflammation. Nat. Biotechnol. 35, 653–658 (2017).

  61. 61.

    Courbet, A., Endy, D., Renard, E., Molina, F. & Bonnet, J. Detection of pathological biomarkers in human clinical samples via amplifying genetic switches and logic gates. Sci. Transl. Med. 7, 289ra83 (2015).

  62. 62.

    Sedlmayer, F. & Fussenegger, M. Synthetic biology: a probiotic probe for inflammation. Nat. Biomed. Eng. 1, 0097 (2017).

  63. 63.

    Pardee, K. et al. Rapid, low-cost detection of Zika virus using programmable biomolecular components. Cell 165, 1255–1266 (2016).

  64. 64.

    Gootenberg, J. S. et al. Nucleic acid detection with CRISPR-Cas13a/C2c2. Science 356, 438–442 (2017).

  65. 65.

    Mimee, M., Tucker, A. C., Voigt, C. A. & Lu, T. K. Programming a human commensal bacterium, Bacteroides thetaiotaomicron, to sense and respond to stimuli in the murine gut microbiota. Cell Syst. 1, 62–71 (2016).

  66. 66.

    Duan, F. F., Liu, J. H. & March, J. C. Engineered commensal bacteria reprogram intestinal cells into glucose-responsive insulin-secreting cells for the treatment of diabetes. Diabetes 64, 1794–1803 (2015).

  67. 67.

    Slomovic, S., Pardee, K. & Collins, J. J. Synthetic biology devices for in vitro and in vivo diagnostics. Proc. Natl Acad. Sci. USA 112, 14429–14435 (2015).

  68. 68.

    Kotula, J. W. et al. Programmable bacteria detect and record an environmental signal in the mammalian gut. Proc. Natl Acad. Sci. USA 111, 4838–4843 (2014).

  69. 69.

    Perli, S. D., Cui, C. H. & Lu, T. K. Continuous genetic recording with self-targeting CRISPR-Cas in human cells. Science 353, aag0511 (2016).

  70. 70.

    Holowko, M. B., Wang, H., Jayaraman, P. & Poh, C. L. Biosensing Vibrio cholerae with genetically engineered Escherichia coli. ACS Synth. Biol. 5, 1275–1283 (2016).

  71. 71.

    Jayaraman, P., Holowko, M. B., Yeoh, J. W., Lim, S. & Poh, C. L. Repurposing a two-component system-based biosensor for the killing of Vibrio cholerae. ACS Synth. Biol. 6, 1403–1415 (2017).

  72. 72.

    Pinero-Lambea, C., Ruano-Gallego, D. & Fernandez, L. A. Engineered bacteria as therapeutic agents. Curr. Opin. Biotechnol. 35, 94–102 (2015).

  73. 73.

    Wu, H. C. et al. Autonomous bacterial localization and gene expression based on nearby cell receptor density. Mol. Syst. Biol. 9, 636 (2013).

  74. 74.

    Maxmen, A. Living therapeutics: scientists genetically modify bacteria to deliver drugs. Nat. Med. 23, 5–7 (2017).

  75. 75.

    Limaye, S. A. et al. Phase 1b, multicenter, single blinded, placebo-controlled, sequential dose escalation study to assess the safety and tolerability of topically applied AG013 in subjects with locally advanced head and neck cancer receiving induction chemotherapy. Cancer 119, 4268–4276 (2013).

  76. 76.

    Xie, Z., Wroblewska, L., Prochazka, L., Weiss, R. & Benenson, Y. Multi-input RNAi-based logic circuit for identification of specific cancer cells. Science 333, 1307–1311 (2011).

  77. 77.

    Nissim, L. & Bar-Ziv, R. H. A tunable dual-promoter integrator for targeting of cancer cells. Mol. Syst. Biol. 6, 444 (2010).

  78. 78.

    Ehrhardt, K., Guinn, M. T., Quarton, T., Zhang, M. Q. & Bleris, L. Reconfigurable hybrid interface for molecular marker diagnostics and in-situ reporting. Biosens. Bioelectron. 74, 744–750 (2015).

  79. 79.

    Nissim, L., Perli, S. D., Fridkin, A., Perez-Pinera, P. & Lu, T. K. Multiplexed and programmable regulation of gene networks with an integrated RNA and CRISPR/Cas toolkit in human cells. Mol. Cell 54, 698–710 (2014).

  80. 80.

    Rössger, K., Charpin-El Hamri, G. & Fussenegger, M. Reward-based hypertension control by a synthetic brain-dopamine interface. Proc. Natl Acad. Sci. USA 110, 18150–18155 (2013).

  81. 81.

    Gröger, A., Kolb, R., Schäfer, R. & Klose, U. Dopamine reduction in the substantia nigra of Parkinson’s disease patients confirmed by in vivo magnetic resonance spectroscopic imaging. PLoS ONE 9, e84081 (2014).

  82. 82.

    Folcher, M. et al. Mind-controlled transgene expression by a wireless-powered optogenetic designer cell implant. Nat. Commun. 5, 5392 (2014).

  83. 83.

    Rössger, K., Charpin-El-Hamri, G. & Fussenegger, M. Bile acid-controlled transgene expression in mammalian cells and mice. Metab. Eng. 21, 81–90 (2014).

  84. 84.

    Morsut, L. et al. Engineering customized cell sensing and response behaviors using synthetic notch receptors. Cell 164, 780–791 (2016).

  85. 85.

    Kawasaki, S., Fujita, Y., Nagaike, T., Tomita, K. & Saito, H. Synthetic mRNA devices that detect endogenous proteins and distinguish mammalian cells. Nucleic Acids Res. 45, e117 (2017).

  86. 86.

    Kim, T., Folcher, M., Charpin-El Hamri, G. & Fussenegger, M. A synthetic cGMP-sensitive gene switch providing Viagra(®)-controlled gene expression in mammalian cells and mice. Metab. Eng. 29, 169–179 (2015).

  87. 87.

    Weber, W. et al. Conditional human VEGF-mediated vascularization in chicken embryos using a novel temperature-inducible gene regulation (TIGR) system. Nucleic Acids Res. 31, e69 (2003).

  88. 88.

    Agustín-Pavón, C. & Isalan, M. Synthetic biology and therapeutic strategies for the degenerating brain: synthetic biology approaches can transform classical cell and gene therapies, to provide new cures for neurodegenerative diseases. Bioessays 36, 979–990 (2014).

  89. 89.

    Maddalena, A., Tereshchenko, J., Bähr, M. & Kügler, S. Adeno-associated virus-mediated, mifepristone-regulated transgene expression in the brain. Mol. Ther. Nucleic Acids 2, e106 (2013).

  90. 90.

    Ausländer, S. et al. A general design strategy for protein-responsive riboswitches in mammalian cells. Nat. Methods 11, 1154–1160 (2014).

  91. 91.

    Slomovic, S. & Collins, J. J. DNA sense-and-respond protein modules for mammalian cells. Nat. Methods 12, 1085–1090 (2015).

  92. 92.

    Schwarz, K. A., Daringer, N. M., Dolberg, T. B. & Leonard, J. N. Rewiring human cellular input–output using modular extracellular sensors. Nat. Chem. Biol. 13, 202–209 (2017).

  93. 93.

    Piñero-Lambea, C. et al. Programming controlled adhesion of E. coli to target surfaces, cells, and tumors with synthetic adhesins. ACS Synth. Biol. 4, 463–473 (2015).

  94. 94.

    Roybal, K. T. et al. Precision tumor recognition by T Cells with combinatorial antigen-sensing circuits. Cell 164, 770–779 (2016).

  95. 95.

    Kloss, C. C., Condomines, M., Cartellieri, M., Bachmann, M. & Sadelain, M. Combinatorial antigen recognition with balanced signaling promotes selective tumor eradication by engineered T cells. Nat. Biotechnol. 31, 71–75 (2013).

  96. 96.

    Kojima, R., Scheller, L. & Fussenegger, M. Nonimmune cells equipped with T-cell-receptor-like signaling for cancer cell ablation. Nat. Chem. Biol. 14, 42–49 (2018).

  97. 97.

    Yin, C. et al. In vivo excision of HIV-1 provirus by saCas9 and multiplex single-guide RNAs in animal models. Mol. Ther. 25, 1168–1186 (2017).

  98. 98.

    Balazs, A. B. et al. Vectored immunoprophylaxis protects humanized mice from mucosal HIV transmission. Nat. Med. 20, 296–300 (2014).

  99. 99.

    Kong, W., Brovold, M., Koeneman, B. A., Clark-Curtiss, J. & Curtiss, R. Turning self-destructing Salmonella into a universal DNA vaccine delivery platform. Proc. Natl Acad. Sci. USA 109, 19414–19419 (2012).

  100. 100.

    Andries, O., Kitada, T., Bodner, K., Sanders, N. N. & Weiss, R. Synthetic biology devices and circuits for RNA-based ‘smart vaccines’: a propositional review. Expert Rev. Vaccin. 14, 313–331 (2015).

  101. 101.

    Brazzoli, M. et al. Induction of broad-based immunity and protective efficacy by self-amplifying mRNA vaccines encoding influenza virus hemagglutinin. J. Virol. 90, 332–344 (2015).

  102. 102.

    Krishnamurthy, M., Moore, R. T., Rajamani, S. & Panchal, R. G. Bacterial genome engineering and synthetic biology: combating pathogens. BMC Microbiol. 16, 258 (2016).

  103. 103.

    Bikard, D. et al. Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials. Nat. Biotechnol. 32, 1146–1150 (2014).

  104. 104.

    Citorik, R. J., Mimee, M. & Lu, T. K. Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases. Nat. Biotechnol. 32, 1141–1145 (2014).

  105. 105.

    Krom, R. J., Bhargava, P., Lobritz, M. A. & Collins, J. J. Engineered phagemids for nonlytic, targeted antibacterial therapies. Nano Lett. 15, 4808–4813 (2015).

  106. 106.

    Yosef, I., Manor, M., Kiro, R. & Qimron, U. Temperate and lytic bacteriophages programmed to sensitize and kill antibiotic-resistant bacteria. Proc. Natl Acad. Sci. USA 112, 7267–7272 (2015).

  107. 107.

    Nielsen, A. A. & Voigt, C. A. Multi-input CRISPR/Cas genetic circuits that interface host regulatory networks. Mol. Syst. Biol. 10, 763 (2014).

  108. 108.

    Ando, H., Lemire, S., Pires, D. P. & Lu, T. K. Engineering modular viral scaffolds for targeted bacterial population editing. Cell Syst. 1, 187–196 (2015).

  109. 109.

    Hwang, I. Y. et al. Reprogramming microbes to be pathogen-seeking killers. ACS Synth. Biol. 3, 228–237 (2014).

  110. 110.

    Hwang, I. Y. et al. Engineered probiotic Escherichia coli can eliminate and prevent Pseudomonas aeruginosa gut infection in animal models. Nat. Commun. 8, 15028 (2017).

  111. 111.

    Gupta, S., Bram, E. E. & Weiss, R. Genetically programmable pathogen sense and destroy. ACS Synth. Biol. 2, 715–723 (2013).

  112. 112.

    Chan, C. T., Lee, J. W., Cameron, D. E., Bashor, C. J. & Collins, J. J. ‘Deadman’ and ‘Passcode’ microbial kill switches for bacterial containment. Nat. Chem. Biol. 12, 82–86 (2016).

  113. 113.

    Sedlmayer, F., Hell, D., Müller, M., Ausländer, D. & Fussenegger, M. Designer cells programming quorum-sensing interference with microbes. Nat. Commun. 9, 1822 (2018).

  114. 114.

    Smole, A., Lainšček, D., Bezeljak, U., Horvat, S. & Jerala, R. A synthetic mammalian therapeutic gene circuit for sensing and suppressing inflammation. Mol. Ther. 25, 102–119 (2017).

  115. 115.

    Qudrat, A., Mosabbir, A. A. & Truong, K. Engineered proteins program mammalian cells to target inflammatory disease sites. Cell Chem. Biol. 24, 703–711.e2 (2017).

  116. 116.

    Park, J. S. et al. Synthetic control of mammalian-cell motility by engineering chemotaxis to an orthogonal bioinert chemical signal. Proc. Natl Acad. Sci. USA 111, 5896–5901 (2014).

  117. 117.

    Mimee, M., Citorik, R. J. & Lu, T. K. Microbiome therapeutics—advances and challenges. Adv. Drug Deliv. Rev. 105, 44–54 (2016).

  118. 118.

    Chen, Z. et al. Incorporation of therapeutically modified bacteria into gut microbiota inhibits obesity. J. Clin. Invest. 124, 3391–3406 (2014).

  119. 119.

    Thompson, J. A., Oliveira, R. A., Djukovic, A., Ubeda, C. & Xavier, K. B. Manipulation of the quorum sensing signal AI-2 affects the antibiotic-treated gut microbiota. Cell Rep. 10, 1861–1871 (2015).

  120. 120.

    Duan, F. & March, J. C. Engineered bacterial communication prevents Vibrio cholerae virulence in an infant mouse model. Proc. Natl Acad. Sci. USA 107, 11260–11264 (2010).

  121. 121.

    Luo, X. et al. Distal modulation of bacterial cell–cell signalling in a synthetic ecosystem using partitioned microfluidics. Lab Chip 15, 1842–1851 (2015).

  122. 122.

    Buffie, C. G. et al. Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile. Nature 517, 205–208 (2015).

  123. 123.

    Thaiss, C. A. et al. Persistent microbiome alterations modulate the rate of post-dieting weight regain. Nature 540, 544–551 (2016).

  124. 124.

    Sheth, R. U., Cabral, V., Chen, S. P. & Wang, H. H. Manipulating bacterial communities by in situ microbiome engineering. Trends Genet. 32, 189–200 (2016).

  125. 125.

    Xie, M. et al. Beta-cell-mimetic designer cells provide closed-loop glycemic control. Science 354, 1296–1301 (2016).

  126. 126.

    Saxena, P. et al. A programmable synthetic lineage-control network that differentiates human IPSCs into glucose-sensitive insulin-secreting beta-like cells. Nat. Commun. 7, 11247 (2016).

  127. 127.

    Ye, H. et al. Self-adjusting synthetic gene circuit for correcting insulin resistance. Nat. Biomed. Eng. 1, 0005 (2017).

  128. 128.

    Müller, K. et al. A red/far-red light-responsive bi-stable toggle switch to control gene expression in mammalian cells. Nucleic Acids Res. 41, e77 (2013).

  129. 129.

    Bacchus, W. et al. Synthetic two-way communication between mammalian cells. Nat. Biotechnol. 30, 991–996 (2012).

  130. 130.

    Miki, K. et al. Efficient detection and purification of cell populations using synthetic microRNA switches. Cell Stem Cell 16, 699–711 (2015).

  131. 131.

    Kim, T., Folcher, M., Doaud-El Baba, M. & Fussenegger, M. A synthetic erectile optogenetic stimulator enabling blue-light-inducible penile erection. Angew. Chem. Int. Ed. 54, 5933–5938 (2015).

  132. 132.

    Ryu, M. H., Moskvin, O. V., Siltberg-Liberles, J. & Gomelsky, M. Natural and engineered photoactivated nucleotidyl cyclases for optogenetic applications. J. Biol. Chem. 285, 41501–41508 (2010).

  133. 133.

    Rubens, J. R., Selvaggio, G. & Lu, T. K. Synthetic mixed-signal computation in living cells. Nat. Commun. 7, 11658 (2016).

  134. 134.

    Ausländer, S., Ausländer, D., Müller, M., Wieland, M. & Fussenegger, M. Programmable single-cell mammalian biocomputers. Nature 487, 123–127 (2012).

  135. 135.

    Daniel, R., Rubens, J. R., Sarpeshkar, R. & Lu, T. K. Synthetic analog computation in living cells. Nature 497, 619–623 (2013).

  136. 136.

    Prochazka, L., Angelici, B., Haefliger, B. & Benenson, Y. Highly modular bow-tie gene circuits with programmable dynamic behaviour. Nat. Commun. 5, 4729 (2014).

  137. 137.

    Wroblewska, L. et al. Mammalian synthetic circuits with RNA binding proteins for RNA-only delivery. Nat. Biotechnol. 33, 839–841 (2015).

  138. 138.

    Dastor, M. et al. A workflow for in vivo evaluation of candidate inputs and outputs for cell classifier gene circuits. ACS Synth. Biol. 7, 474–489 (2018).

  139. 139.

    Liu, Y. et al. Synthesizing AND gate genetic circuits based on CRISPR-Cas9 for identification of bladder cancer cells. Nat. Commun. 5, 5393 (2014).

  140. 140.

    Morel, M., Shtrahman, R., Rotter, V., Nissim, L. & Bar-Ziv, R. H. Cellular heterogeneity mediates inherent sensitivity–specificity tradeoff in cancer targeting by synthetic circuits. Proc. Natl Acad. Sci. USA 113, 8133–8138 (2016).

  141. 141.

    Nissim, L. et al. Synthetic RNA-based immunomodulatory gene circuits for cancer immunotherapy. Cell 171, 1138–1150.e15 (2017).

  142. 142.

    Baeumler, T. A., Ahmed, A. A. & Fulga, T. A. Engineering synthetic signaling pathways with programmable dCas9-based chimeric receptors. Cell Rep. 20, 2639–2653 (2017).

  143. 143.

    Konermann, S. et al. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 517, 583–588 (2015).

  144. 144.

    Ausländer, D. et al. Programmable full-adder computations in communicating three-dimensional cell cultures. Nat. Methods 15, 57–60 (2018).

  145. 145.

    You, M., Zhu, G., Chen, T., Donovan, M. J. & Tan, W. Programmable and multiparameter DNA-based logic platform for cancer recognition and targeted therapy. J. Am. Chem. Soc. 137, 667–674 (2015).

  146. 146.

    Green, A. A. et al. Complex cellular logic computation using ribocomputing devices. Nature 548, 117–121 (2017).

  147. 147.

    Schukur, L. & Fussenegger, M. Engineering of synthetic gene circuits for (re-)balancing physiological processes in chronic diseases. Wiley Interdiscip. Rev. Syst. Biol. Med. 8, 402–422 (2016).

  148. 148.

    Hoerner, M. & Weber, W. Molecular switches in animal cells. FEBS Lett. 586, 2084–2096 (2012).

  149. 149.

    Weber, W. & Fussenegger, M. Emerging biomedical applications of synthetic biology. Nat. Rev. Genet. 13, 21–35 (2012).

  150. 150.

    Xie, M., Haellman, V. & Fussenegger, M. Synthetic biology-application-oriented cell engineering. Curr. Opin. Biotechnol. 40, 139–148 (2016).

  151. 151.

    Chassin, H. et al. Sensing and responding to allergic response cytokines through a genetically encoded circuit. Nat. Commun. 8, 1101 (2017).

  152. 152.

    A race to bring CRISPR to the clinic. EBioMedicine 19, 1 (2017).

  153. 153.

    Steidler, L. et al. Biological containment of genetically modified Lactococcus lactis for intestinal delivery of human interleukin 10. Nat. Biotechnol. 21, 785–789 (2003).

  154. 154.

    Ausländer, S., Wieland, M. & Fussenegger, M. Smart medication through combination of synthetic biology and cell microencapsulation. Metab. Eng. 14, 252–260 (2012).

  155. 155.

    Quintero, D., Carrafa, J., Vincent, L. & Bermudes, D. EGFR-targeted chimeras of Pseudomonas ToxA released into the extracellular milieu by attenuated Salmonella selectively kill tumor cells. Biotechnol. Bioeng. 113, 2698–2711 (2016).

  156. 156.

    Ittig, S. J. et al. A bacterial type III secretion-based protein delivery tool for broad applications in cell biology. J. Cell Biol. 211, 913–931 (2015).

  157. 157.

    Lu, T. K. & Collins, J. J. Dispersing biofilms with engineered enzymatic bacteriophage. Proc. Natl Acad. Sci. USA 104, 11197–11202 (2007).

  158. 158.

    Cameron, D. E. & Collins, J. J. Tunable protein degradation in bacteria. Nat. Biotechnol. 32, 1276–1281 (2014).

  159. 159.

    Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012).

  160. 160.

    Prasad, V. Immunotherapy: tisagenlecleucel—the first approved CAR-T-cell therapy: implications for payers and policy makers. Nat. Rev. Clin. Oncol. 15, 11–12 (2018).

  161. 161.

    Busskamp, V. et al. Rapid neurogenesis through transcriptional activation in human stem cells. Mol. Syst. Biol. 10, 760 (2014).

  162. 162.

    Roybal, K. T. et al. Engineering T cells with customized therapeutic response programs using synthetic notch receptors. Cell 167, 419–432.e16 (2016).

  163. 163.

    Klingemann, H., Boissel, L. & Toneguzzo, F. Natural killer cells for immunotherapy-advantages of the NK-92 cell line over blood NK cells. Front. Immunol. 7, 91 (2016).

  164. 164.

    Guye, P. et al. Genetically engineering self-organization of human pluripotent stem cells into a liver bud-like tissue using Gata6. Nat. Commun. 7, 10243 (2016).

  165. 165.

    Rezania, A. et al. Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells. Nat. Biotechnol. 32, 1121–1133 (2014).

Download references

Acknowledgements

We thank D. Fuchs, D. Sequeira, X. Pierrat and S. Ausländer for scientific advice. This work was supported by a European Research Council Advanced Grant (ProNet, no. 321381).

Author information

Affiliations

  1. Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland

    • Ferdinand Sedlmayer
    •  & Martin Fussenegger
  2. IUTA Département Génie Biologique, Université Claude Bernard Lyon 1, Lyon, France

    • Dominique Aubel
  3. Faculty of Science, University of Basel, Basel, Switzerland

    • Martin Fussenegger

Authors

  1. Search for Ferdinand Sedlmayer in:

  2. Search for Dominique Aubel in:

  3. Search for Martin Fussenegger in:

Contributions

All authors contributed to writing and editing of the Review.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Martin Fussenegger.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41551-018-0215-0