Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A ribonucleoprotein octamer for targeted siRNA delivery

A Publisher Correction to this article was published on 12 July 2018

This article has been updated

Abstract

Hurdles in cell-specific delivery of small interfering RNA (siRNA) in vivo hinder the clinical translation of RNA interference (RNAi). A fundamental problem concerns conflicting requirements for the design of the delivery vehicles: cationic materials facilitate cargo condensation and endosomolysis, yet hinder in vivo targeting and colloidal stability. Here, we describe a self-assembled, compact (~30 nm) and biocompatible ribonucleoprotein-octamer nanoparticle that achieves endosomal destabilization and targeted delivery. The protein octamer consists of a poly(ethylene glycol) scaffold, a sterically masked endosomolytic peptide and a double-stranded RNA-binding domain, providing a discrete number of siRNA loading sites and a high siRNA payload (>30 wt%), and offering flexibility in both siRNA and targeting-ligand selection. We show that a ribonucleoprotein octamer against the polo-like kinase 1 gene and bearing a ligand that binds to prostate-specific membrane antigen leads to efficient gene silencing in prostate tumour cells in vitro and when intravenously injected in mouse models of prostate cancer. The octamer’s versatile nanocarrier design should offer opportunities for the clinical translation of therapies based on intracellularly acting biologics.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Schematic and characterization of RNP8 and its intermediates.
Fig. 2: PSMA-mediated specific RNP8 binding to cells.
Fig. 3: RNP8 cell uptake and intracellular trafficking.
Fig. 4: Silencing of Plk1 by RNP8 in vitro.
Fig. 5: Biodistribution of siRNA–DUPA and RNP8 in tumour-bearing mice.
Fig. 6: In vivo RNAi with RNP8.

Change history

  • 12 July 2018

    In the version of this Article originally published, in Fig. 3b, middle row, the units ‘nM’ were incorrect and should have been ‘min’. And, in Fig. 4f, in the bottom row, the data in the middle and right panels were mistakenly duplicated from the panels above. These errors have now been corrected.

References

  1. Hannon, G. J. RNA interference. Nature 418, 244–251 (2002).

    Article  PubMed  CAS  Google Scholar 

  2. Scherer, L. J. & Rossi, J. J. Approaches for the sequence-specific knockdown of mRNA. Nat. Biotechnol. 21, 1457–1465 (2003).

    Article  PubMed  CAS  Google Scholar 

  3. Bahal, R. et al. In vivo correction of anaemia in β-thalassemic mice by γPNA-mediated gene editing with nanoparticle delivery. Nat. Commun. 7, 13304 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Cox, D. B., Platt, R. J. & Zhang, F. Therapeutic genome editing: prospects and challenges. Nat. Med. 21, 121–131 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Nelson, C. E. et al. In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science 351, 403–407 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Suzuki, K. et al. In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration. Nature 540, 144–149 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Ashley, C. E. et al. The targeted delivery of multicomponent cargos to cancer cells by nanoporous particle-supported lipid bilayers. Nat. Mater. 10, 389–397 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Kumar, P. et al. Transvascular delivery of small interfering RNA to the central nervous system. Nature 448, 39–43 (2007).

    Article  PubMed  CAS  Google Scholar 

  9. Whitehead, K. A., Langer, R. & Anderson, D. G. Knocking down barriers: advances in siRNA delivery. Nat. Rev. Drug Discov. 8, 129–138 (2009).

    Article  PubMed  CAS  Google Scholar 

  10. Pecot, C. V., Calin, G. A., Coleman, R. L., Lopez-Berestein, G. & Sood, A. K. RNA interference in the clinic: challenges and future directions. Nat. Rev. Cancer 11, 59–67 (2011).

    Article  PubMed  CAS  Google Scholar 

  11. Nair, J. K. et al. Multivalent N-acetylgalactosamine-conjugated siRNA localizes in hepatocytes and elicits robust RNAi-mediated gene silencing. J. Am. Chem. Soc. 136, 16958–16961 (2014).

    Article  PubMed  CAS  Google Scholar 

  12. Eguchi, A. et al. Efficient siRNA delivery into primary cells by a peptide transduction domain–dsRNA binding domain fusion protein. Nat. Biotechnol. 27, 567–571 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Kanasty, R., Dorkin, J. R., Vegas, A. & Anderson, D. Delivery materials for siRNA therapeutics. Nat. Mater. 12, 967–977 (2013).

    Article  PubMed  CAS  Google Scholar 

  14. Bevilacqua, P. C. & Cech, T. R. Minor-groove recognition of double-stranded RNA by the double-stranded RNA-binding domain from the RNA-activated protein kinase PKR. Biochemistry 35, 9983–9994 (1996).

    Article  PubMed  CAS  Google Scholar 

  15. Bagci, H., Kohen, F., Kuscuoglu, U., Bayer, E. A. & Wilchek, M. Monoclonal anti-biotin antibodies simulate avidin m the recognition of biotin. FEBS Lett. 322, 47–50 (1993).

    Article  PubMed  CAS  Google Scholar 

  16. Dassie, J. P. et al. Systemic administration of optimized aptamer-siRNA chimeras promotes regression of PSMA-expressing tumors. Nat. Biotechnol. 27, 839–846 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. McNamara, J. O. et al. Cell type-specific delivery of siRNAs with aptamer-siRNA chimeras. Nat. Biotechnol. 24, 1005–1015 (2006).

    Article  PubMed  CAS  Google Scholar 

  18. Thiel, K. W. et al. Delivery of chemo-sensitizing siRNAs to HER2+-breast cancer cells using RNA aptamers. Nucleic Acids Res. 40, 6319–6337 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Neff, C. P. et al. An aptamer-siRNA chimera suppresses HIV-1 viral loads and protects from helper CD4+ T cell decline in humanized mice. Sci. Transl. Med. 3, 66ra66 (2011).

    Article  CAS  Google Scholar 

  20. Kularatne, S. A., Wang, K., Santhapuram, H.-K. R. & Low, P. S. Prostate-specific membrane antigen targeted imaging and therapy of prostate cancer using a PSMA inhibitor as a homing ligand. Mol. Pharm. 6, 780–789 (2009).

    Article  PubMed  CAS  Google Scholar 

  21. Chang, S. S., Reuter, V. E., Heston, W. D. W. & Gaudin, P. B. Metastatic renal cell carcinoma neovasculature expresses prostate-specific membrane antigen. Urology 57, 801–805 (2001).

    Article  PubMed  CAS  Google Scholar 

  22. Bander, N. H. et al. Targeting metastatic prostate cancer with radiolabeled monoclonal antibody J591 to the extracellular domain of prostate specific membrane antigen. J. Urol. 170, 1717–1721 (2003).

    Article  PubMed  CAS  Google Scholar 

  23. Nanduri, S., Carpick, B. W., Yang, Y. W., Williams, B. R. G. & Qin, J. Structure of the double-stranded RNA-binding domain of the protein kinase PKR reveals the molecular basis of its dsRNA-mediated activation. EMBO J. 17, 5458–5465 (1998).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Ryter, J. M. & Schultz, S. C. Molecular basis of double-stranded RNA-protein interactions: structure of a dsRNA-binding domain complexed with dsRNA. EMBO J. 17, 7505–7513 (1998).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Liu, H. Y. & Gao, X. A universal protein tag for delivery of siRNA-aptamer chimeras. Sci. Rep. 3, 3129 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Cabral, H. et al. Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size. Nat. Nanotech. 6, 815–823 (2011).

    Article  CAS  Google Scholar 

  27. Krishnamurthy, V. M., Estroff, L .A. & Whitesides, G. M. in Fragment-based Approaches in Drug Discovery 11–53 (Wiley, Weinheim, Germany, 2006).

  28. Badjic, J. D., Nelson, A., Cantrill, S. J., Turnbull, W. B. & Stoddart, J. F. Multivalency and cooperativity in supramolecular chemistry. Acc. Chem. Res. 38, 723–732 (2005).

    Article  PubMed  CAS  Google Scholar 

  29. Midoux, P., Pichon, C., Yaouanc, J.-J. & Jaffrès, P.-A. Chemical vectors for gene delivery: a current review on polymers, peptides and lipids containing histidine or imidazole as nucleic acids carriers. Br. J. Pharmacol. 157, 166–178 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Pichon, C., Goncalves, C. & Midoux, P. Histidine-rich peptides and polymers for nucleic acids delivery. Adv. Drug Deliv. Rev. 53, 75–94 (2001).

    Article  PubMed  CAS  Google Scholar 

  31. Behr, J. P. The proton sponge: a trick to enter cells the viruses did not exploit. Chimia 51, 34–36 (1997).

    CAS  Google Scholar 

  32. Schmedt, C. et al. Functional characterization of the RNA-binding domain and motif of the double-stranded RNA-dependent protein-kinase DAI (PKR). J. Mol. Biol. 249, 29–44 (1995).

    Article  PubMed  CAS  Google Scholar 

  33. Buyens, K., De Smedt, S., Demeester, J. & Sanders, N. Why simple cationic liposome formulations fail to deliver siRNA efficiently in vivo. Hum. Gene Ther. 18, 1070 (2007).

    Google Scholar 

  34. Merkel, O. M. et al. Stability of siRNA polyplexes from poly(ethylenimine) and poly(ethylenimine)-g-poly(ethylene glycol) under in vivo conditions: effects on pharmacokinetics and biodistribution measured by fluorescence fluctuation spectroscopy and single photon emission computed tomography (SPECT) imaging. J. Control. Release 138, 148–159 (2009).

    Article  PubMed  CAS  Google Scholar 

  35. Wu, S. Y., Lopez-Berestein, G., Calin, G. A. & Sood, A. K. RNAi therapies: drugging the undruggable. Sci. Transl. Med. 6, 240ps7 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Gao, S. et al. The effect of chemical modification and nanoparticle formulation on stability and biodistribution of siRNA in mice. Mol. Ther. 17, 1225–1233 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Lee, S. Y. et al. Stability and cellular uptake of polymerized siRNA (poly-siRNA)/polyethylenimine (PEI) complexes for efficient gene silencing. J. Control. Release 141, 339–346 (2010).

    Article  PubMed  CAS  Google Scholar 

  38. Parenky, A. et al. New FDA draft guidance on immunogenicity. AAPS J. 16, 499–503 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Hamm, S. et al. Alternating 2′-O-ribose methylation is a universal approach for generating non-stimulatory siRNA by acting as TLR7 antagonist. Immunobiology 215, 559–569 (2010).

    Article  PubMed  CAS  Google Scholar 

  40. Li, H., Zheng, X., Koren, V., Vashist, Y. K. & Tsui, T. Y. Highly efficient delivery of siRNA to a heart transplant model by a novel cell penetrating peptide-dsRNA binding domain. Int. J. Pharm. 469, 206–213 (2014).

    Article  PubMed  CAS  Google Scholar 

  41. Haroon, M. M. et al. A designed recombinant fusion protein for targeted delivery of siRNA to the mouse brain. J. Control. Release 228, 120–131 (2016).

    Article  PubMed  CAS  Google Scholar 

  42. Geoghegan, J. C., Gilmore, B. L. & Davidson, B. L. Gene silencing mediated by siRNA-binding fusion proteins is attenuated by double-stranded RNA-binding domain structure. Mol. Ther. Nucleic Acids 1, e53 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Sanchez-Garcia, L. et al. Recombinant pharmaceuticals from microbial cells: a 2015 update. Microb. Cell Fact. 15, 33 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Qi, Y. et al. A brush-polymer/exendin-4 conjugate reduces blood glucose levels for up to five days and eliminates poly(ethylene glycol) antigenicity. Nat. Biomed. Eng. 1, 0002 (2017).

    Article  Google Scholar 

  45. Hsu, T. & Mitragotri, S. Delivery of siRNA and other macromolecules into skin and cells using a peptide enhancer. Proc. Natl Acad. Sci. USA 108, 15816–15821 (2011).

    Article  PubMed  Google Scholar 

  46. Yao, Y. D. et al. Targeted delivery of PLK1-siRNA by ScFv suppresses Her2+ breast cancer growth and metastasis. Sci. Transl. Med. 4, 130ra148 (2012).

    Article  Google Scholar 

  47. Chen, Q. et al. Lipophilic siRNAs mediate efficient gene silencing in oligodendrocytes with direct CNS delivery. J. Control Release 144, 227–232 (2010).

    Article  PubMed  CAS  Google Scholar 

  48. Singh, N., Agrawal, A., Leung, A. K., Sharp, P. A. & Bhatia, S. N. Effect of nanoparticle conjugation on gene silencing by RNA interference. J. Am. Chem. Soc. 132, 8241–8243 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Breunig, M. et al. Mechanistic investigation of poly(ethylene imine)-based siRNA delivery: disulfide bonds boost intracellular release of the cargo. J. Control. Release 130, 57–63 (2008).

    Article  PubMed  CAS  Google Scholar 

  50. Potera, C. Antisense-down, but not out. Nat. Biotechnol. 25, 497–499 (2007).

    Article  PubMed  CAS  Google Scholar 

  51. Studier, F. W. Protein production by auto-induction in high density shaking cultures. Protein Expr. Purif. 41, 207–234 (2005).

    Article  PubMed  CAS  Google Scholar 

  52. Kim, C. H. et al. Bispecific small molecule-antibody conjugate targeting prostate cancer. Proc. Natl Acad. Sci. USA 110, 17796–17801 (2013).

    Article  PubMed  Google Scholar 

  53. Stratford, S. et al. Examination of real-time polymerase chain reaction methods for the detection and quantification of modified siRNA. Anal. Biochem. 379, 96–104 (2008).

    Article  PubMed  CAS  Google Scholar 

  54. Beck, J. et al. Ubiquitylation-dependent localization of PLK1 in mitosis. Nat. Cell Biol. 15, 430–439 (2013).

    Article  PubMed  CAS  Google Scholar 

  55. Höbel, S. & Aigner, A. In RNA Interference: From Biology to Clinical Applications (eds Min, W.-P. & Ichim, T.) 283–297 (Humana Press, Totowa, NJ, 2010).

Download references

Acknowledgements

This work was supported in part by the National Institutes of Health (R01CA140295), the Department of Bioengineering and the Office of Research at the University of Washington. We are also grateful to L. Tonggu and L. Wang for help with TEM measurements and data interpretation, B. Vessella for help with tumour model establishment and J. Sumida at the University of Washington Analytical Biopharmacy Core for help with the surface plasmon resonance measurements.

Author information

Authors and Affiliations

Authors

Contributions

W.T. and X.G. conceived the idea and designed the project. W.T. and J.L. performed the experiments. W.T., E.C. and X.G. analysed the data and wrote the paper.

Corresponding author

Correspondence to Xiaohu Gao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tai, W., Li, J., Corey, E. et al. A ribonucleoprotein octamer for targeted siRNA delivery. Nat Biomed Eng 2, 326–337 (2018). https://doi.org/10.1038/s41551-018-0214-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41551-018-0214-1

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing