Treatment of chronic pain by designer cells controlled by spearmint aromatherapy

Abstract

Current treatment options for chronic pain are often associated with dose-limiting toxicities, or lead to drug tolerance or addiction. Here, we describe a pain management strategy, based on cell-engineering principles and inspired by synthetic biology, consisting of microencapsulated human designer cells that produce huwentoxin-IV (a safe and potent analgesic peptide that selectively inhibits the pain-triggering voltage-gated sodium channel NaV1.7) in response to volatile spearmint aroma and in a dose-dependent manner. Spearmint sensitivity was achieved by ectopic expression of the R-carvone-responsive olfactory receptor OR1A1 rewired via an artificial G-protein deflector to induce the expression of a secretion-engineered and stabilized huwentoxin-IV variant. In a model of chronic inflammatory and neuropathic pain, mice bearing the designer cells showed reduced pain-associated behaviour on oral intake or inhalation-based intake of spearmint essential oil, and absence of cardiovascular, immunogenic and behavioural side effects. Our proof-of-principle findings indicate that therapies based on engineered cells can achieve robust, tunable and on-demand analgesia for the long-term management of chronic pain.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Engineering of ssHwTx.
Fig. 2: Engineering and validation of ssHwTx.
Fig. 3: Engineering human cells for spearmint-inducible gene expression.
Fig. 4: Validation of spearmint-inducible gene expression.
Fig. 5: Construction and characterization of AromaCell line.
Fig. 6: Validation of AromaCell-mediated pain therapy in mice.
Fig. 7: AromaCell-mediated pain therapy in CCI mice.

References

  1. 1.

    Lampert, A., O’Reilly, A. O., Reeh, P. & Leffler, A. Sodium channelopathies and pain. Pflug. Arch. Eur. J. Phy. 460, 249–263 (2010).

    CAS  Article  Google Scholar 

  2. 2.

    King, G. F. & Vetter, I. No gain, no pain: NaV1.7 as an analgesic target. ACS Chem. Neurosci. 5, 749–751 (2014).

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Goins, W. F., Cohen, J. B. & Glorioso, J. C. Gene therapy for the treatment of chronic peripheral nervous system pain. Neurobiol. Dis. 48, 255–270 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Dib-Hajj, S. D., Yang, Y., Black, J. A. & Waxman, S. G. The NaV1.7 sodium channel: from molecule to man. Nat. Rev. Neurosci. 14, 49–62 (2013).

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Grosser, T., Woolf, C. J. & FitzGerald, G. A. Time for nonaddictive relief of pain. Science 355, 1026–1027 (2017).

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Adams, D. J., Callaghan, B. & Berecki, G. Analgesic conotoxins: block and G protein-coupled receptor modulation of N-type (CaV2.2) calcium channels. Br. J. Pharmacol. 166, 486–500 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    McGivern, J. G. Ziconotide: a review of its pharmacology and use in the treatment of pain. Neuropsychiatr. Dis. Treat. 3, 69–85 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Revell, J. D. et al. Potency optimization of Huwentoxin-IV on hNav1.7: a neurotoxin TTX-S sodium-channel antagonist from the venom of the Chinese bird-eating spider Selenocosmia huwena. Peptides 44, 40–46 (2013).

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Murray, J. K. et al. Engineering potent and selective analogues of GpTx-1, a tarantula venom peptide antagonist of the NaV1.7 sodium channel. J. Med. Chem. 58, 2299–2314 (2015).

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Liu, Y. et al. Analgesic effects of Huwentoxin-IV on animal models of inflammatory and neuropathic pain. Protein Pept. Lett. 21, 153–158 (2014).

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Ye, H. et al. Self-adjusting synthetic gene circuit for correcting insulin resistance. Nat. Biomed. Eng. 1, 1–9 (2016).

    Article  Google Scholar 

  12. 12.

    Chowdhury, S. et al. Discovery of XEN907, a spirooxindole blocker of NaV1.7 for the treatment of pain. Bioorg. Med. Chem. Lett. 21, 3676–3681 (2011).

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    McCormack, K. et al. Voltage sensor interaction site for selective small molecule inhibitors of voltage-gated sodium channels. Proc. Natl Acad. Sci. USA 110, E2724–E2732 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Sheets, P. L., Jarecki, B. W. & Cummins, T. R. Lidocaine reduces the transition to slow inactivation in Nav1.7 voltage-gated sodium channels. Br. J. Pharmacol. 164, 719–730 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Gintant, G., Sager, P. T. & Stockbridge, N. Evolution of strategies to improve preclinical cardiac safety testing. Nat. Rev. Drug Discov. 15, 457–471 (2016).

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Lee, J. H. et al. A monoclonal antibody that targets a NaV1.7 channel voltage sensor for pain and itch relief. Cell 157, 1393–1404 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Vissers, K. C., Geenen, F., Biermans, R. & Meert, T. F. Pharmacological correlation between the formalin test and the neuropathic pain behavior in different species with chronic constriction injury. Pharmacol. Biochem Behav. 84, 479–486 (2006).

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Hunskaar, S., Fasmer, O. B. & Hole, K. Formalin test in mice, a useful technique for evaluating mild analgesics. J. Neurosci. Methods 14, 69–76 (1985).

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Sufka, K. J., Watson, G. S., Nothdurft, R. E. & Mogil, J. S. Scoring the mouse formalin test: validation study. Eur. J. Pain. 2, 351–358 (1998).

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Dahoun, T., Grasso, L., Vogel, H. & Pick, H. Recombinant expression and functional characterization of mouse olfactory receptor mOR256-17 in mammalian cells. Biochemistry 50, 7228–7235 (2011).

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Sun, N., Lee, A. & Wu, J. C. Long term non-invasive imaging of embryonic stem cells using reporter genes. Nat. Protoc. 4, 1192–1201 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Saito, H., Kubota, M., Roberts, R. W., Chi, Q. & Matsunami, H. RTP family members induce functional expression of mammalian odorant receptors. Cell 119, 679–691 (2004).

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Reichling, J., Schnitzler, P., Suschke, U. & Saller, R. Essential oils of aromatic plants with antibacterial, antifungal, antiviral, and cytotoxic properties—an overview. Forsch. Komplementmed. 16, 79–90 (2009).

    PubMed  Google Scholar 

  24. 24.

    Muller, M. et al. Designed cell consortia as fragrance-programmable analog-to-digital converters. Nat. Chem. Biol. 13, 309–316 (2017).

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Ni, C. H. et al. The anxiolytic effect of aromatherapy on patients awaiting ambulatory surgery: a randomized controlled trial. Evid. Based Compl. Alt. 2013, 927419 (2013).

  26. 26.

    Bilia, A. R. et al. Essential oils loaded in nanosystems: a developing strategy for a successful therapeutic approach. Evid. Based Compl. Alt. 2014, 651593 (2014).

  27. 27.

    Xu, Z. Z. et al. Resolvins RvE1 and RvD1 attenuate inflammatory pain via central and peripheral actions. Nat. Med. 16, 592–597 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Liu, C., Cao, J., Ren, X. & Zang, W. Nav1.7 protein and mRNA expression in the dorsal root ganglia of rats with chronic neuropathic pain. Neural Regen. Res. 7, 1540–1544 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Burgess, G. & Williams, D. The discovery and development of analgesics: new mechanisms, new modalities. J. Clin. Investig. 120, 3753–3759 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Cox, J. J. et al. An SCN9A channelopathy causes congenital inability to experience pain. Nature 444, 894–898 (2006).

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Xie, M. & Fussenegger, M. Mammalian designer cells: engineering principles and biomedical applications. Biotechnol. J. 10, 1005–1018 (2015).

    Article  PubMed  Google Scholar 

  32. 32.

    Trounson, A. & DeWitt, N. D. Pluripotent stem cells progressing to the clinic. Nat. Rev. Mol. Cell Biol. 17, 194–200 (2016).

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Lathuiliere, A., Cosson, S., Lutolf, M. P., Schneider, B. L. & Aebischer, P. A high-capacity cell macroencapsulation system supporting the long-term survival of genetically engineered allogeneic cells. Biomaterials 35, 779–791 (2014).

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Prohaska, J. R. & Broderius, M. Plasma peptidylglycine alpha-amidating monooxygenase (PAM) and ceruloplasmin are affected by age and copper status in rats and mice. Comp. Biochem. Phys. B 143, 360–366 (2006).

    Article  Google Scholar 

  35. 35.

    Merkler, D. J. C-terminal amidated peptides: production by the in vitro enzymatic amidation of glycine-extended peptides and the importance of the amide to bioactivity. Enzym. Microb. Technol. 16, 450–456 (1994).

    CAS  Article  Google Scholar 

  36. 36.

    Xie, M. et al. beta-cell-mimetic designer cells provide closed-loop glycemic control. Science 354, 1296–1301 (2016).

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Bonin, R. P., Bories, C. & De Koninck, Y. A simplified up-down method (SUDO) for measuring mechanical nociception in rodents using von Frey filaments. Mol. Pain. 10, 26 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Denk, F., Crow, M., Didangelos, A., Lopes, D. M. & McMahon, S. B. Persistent alterations in microglial enhancers in a model of chronic pain. Cell Rep. 15, 1771–1781 (2016).

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Hassan, A. M. et al. Visceral hyperalgesia caused by peptide YY deletion and Y2 receptor antagonism. Sci. Rep. 7, 40968 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Chaplan, S. R., Bach, F. W., Pogrel, J. W., Chung, J. M. & Yaksh, T. L. Quantitative assessment of tactile allodynia in the rat paw. J. Neurosci. Methods 53, 55–63 (1994).

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Ren, K. & Dubner, R. Inflammatory models of pain and hyperalgesia. ILAR J. 40, 111–118 (1999).

    Article  PubMed  Google Scholar 

  42. 42.

    Beko, K. et al. Contribution of platelet P2Y12 receptors to chronic Complete Freund’s adjuvant-induced inflammatory pain. J. Thromb. Haemost. 15, 1223–1235 (2017).

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    Bennett, G. J. & Xie, Y. K. A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain 33, 87–107 (1988).

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Motulsky, H. J. & Brown, R. E. Detecting outliers when fitting data with nonlinear regression—a new method based on robust nonlinear regression and the false discovery rate. BMC Bioinformatics 7, 123 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Wang, H., Ye, H., Xie, M., Daoud El-Baba, M. & Fussenegger, M. Cosmetics-triggered percutaneous remote control of transgene expression in mice. Nucleic Acids Res. 43, e91 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  46. 46

    Branson, K. Distinguishing seemingly indistinguishable animals with computer vision. Nat. Methods 11, 721–722 (2014).

Download references

Acknowledgements

We thank L. Scheller for critical comments on the manuscript; A. W. Xie (Welfine Science & Technology) for providing the Bel-Air aroma diffuser; V. Jäggin and T. Lopes for assistance with fluorescence-activated cell sorting; M. Daoud-El Baba, S. Xue and J. Yin for help with animal experiments, and Y. Huang (ChemPartner) for the CCI-based mouse model; D. Bodenham for support with statistical analysis; and M. Müller, P. Saxena and R. Kojima for generous advice. This work was supported by a European Research Council advanced grant (ProNet, no. 321381), by the National Centre of Competence in Research Molecular Systems Engineering, the National Natural Science Foundation of China (grant nos 31522017, 31470834 and 31670869) and the Thousand Youth Talents Plan of China.

Author information

Affiliations

Authors

Contributions

H.W., M.X., G.C.-E.H. and H.Y. conducted the experiments, and H.W., M.X. and M.F. designed the experiments and wrote the manuscript.

Corresponding author

Correspondence to Martin Fussenegger.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary methods, figures, tables and references.

Life Sciences Reporting Summary

Videos

Supplementary Video 1

Representative 1-minute video of all treatment groups from Fig. 6b,c.

Supplementary Video 2

Representative 13-second video of Straub tail and rearing reactions of mice treated with morphine.

Supplementary Video 3

Representative epileptic seizure of a CCI-mouse treated with Tramadol at day 7 (with 3 daily injections of 50 mg per kg).

Supplementary Video 4

Representative 1-minute video of naloxone-precipitated drug withdrawal effects (AromaCell versus morphine treatment groups; Fig. 7b).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Xie, M., Charpin-El Hamri, G. et al. Treatment of chronic pain by designer cells controlled by spearmint aromatherapy. Nat Biomed Eng 2, 114–123 (2018). https://doi.org/10.1038/s41551-018-0192-3

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing