Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Prolonged survival of transplanted stem cells after ischaemic injury via the slow release of pro-survival peptides from a collagen matrix

Abstract

Stem-cell-based therapies hold considerable promise for regenerative medicine. However, acute donor-cell death within several weeks after cell delivery remains a critical hurdle for clinical translation. Co-transplantation of stem cells with pro-survival factors can improve cell engraftment, but this strategy has been hampered by the typically short half-lives of the factors and by the use of Matrigel and other scaffolds that are not chemically defined. Here, we report a collagen–dendrimer biomaterial crosslinked with pro-survival peptide analogues that adheres to the extracellular matrix and slowly releases the peptides, significantly prolonging stem cell survival in mouse models of ischaemic injury. The biomaterial can serve as a generic delivery system to improve functional outcomes in cell-replacement therapy.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Preparation of peptide-linked collagen.
Fig. 2: Slow release of peptides from the col×D×pep pro-survival matrix in vitro and in vivo.
Fig. 3: Evaluation of cell survival and limb perfusion after implanting BMMNCs with col×D×pep in SCID and immunocompetent mice after femoral artery ligation.
Fig. 4: Evaluation of limb perfusion after implanting BMMNCs with col×D×pep in immunocompetent mice after femoral artery ligation.
Fig. 5: The col×D×pep pro-survival matrix promotes long-term cell survival in vivo.
Fig. 6: Evaluation of graft function after implanting cardiac progenitor cells with col×D×pep in a SCID model of myocardial infarction.
Fig. 7: Evaluation of the effects of CPC delivery with col×D×pep pro-survival matrix on post-infarct ventricular function by echocardiography and MRI.
Fig. 8: Evaluation of left ventricular remodelling in immunodeficient mice by MRI after delivery of col×D×pep.

Similar content being viewed by others

References

  1. Nguyen, P. K., Neofytou, E., Rhee, J. W. & Wu, J. C. Potential strategies to address the major clinical barriers facing stem cell regenerative therapy for cardiovascular disease: a review. JAMA Cardiol. 1, 953–962 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Zwetsloot, P. P. et al. Cardiac stem cell treatment in myocardial infarction: a systematic review and meta-analysis of preclinical studies. Circ. Res. 118, 1223–1232 (2016).

    Article  CAS  PubMed  Google Scholar 

  3. Discher, D. E., Mooney, D. J. & Zandstra, P. W. Growth factors, matrices, and forces combine and control stem cells. Science 324, 1673–1677 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pompe, T., Salchert, K., Alberti, K., Zandstra, P. & Werner, C. Immobilization of growth factors on solid supports for the modulation of stem cell fate. Nat. Protoc. 5, 1042–1050 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Hu, S. et al. Novel microRNA prosurvival cocktail for improving engraftment and function of cardiac progenitor cell transplantation. Circulation 124, S27–S34 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Laflamme, M. A. et al. Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat. Biotechnol. 25, 1015–1024 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Seif-Naraghi, S. B. et al. Safety and efficacy of an injectable extracellular matrix hydrogel for treating myocardial infarction. Sci. Transl. Med. 5, 173 (2013).

    Article  Google Scholar 

  8. Cha, C., Liechty, W. B., Khademhosseini, A. & Peppas, N. A. Designing biomaterials to direct stem cell fate. ACS Nano 6, 9353–9358 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hahn, J. Y. et al. Pre-treatment of mesenchymal stem cells with a combination of growth factors enhances gap junction formation, cytoprotective effect on cardiomyocytes, and therapeutic efficacy for myocardial infarction. J. Am. Coll. Cardiol. 51, 933–943 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Zhang, Y., Alexander, P. B. & Wang, X. F. TGF-beta family signaling in the control of cell proliferation and survival. Cold Spring Harb. Perspect. Biol. 9, 1–22 (2017).

    Google Scholar 

  11. Hu, X. et al. A large-scale investigation of hypoxia-preconditioned allogeneic mesenchymal stem cells for myocardial repair in nonhuman primates: paracrine activity without remuscularization. Circ. Res. 118, 970–983 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nguyen, P. K., Rhee, J. W. & Wu, J. C. Adult stem cell therapy and heart failure, 2000 to 2016: a systematic review. JAMA Cardiol. 1, 831–841 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Sheikh, A. Y. et al. In vivo functional and transcriptional profiling of bone marrow stem cells after transplantation into ischemic myocardium. Arterioscler. Thromb. Vasc. Biol. 32, 92–102 (2012).

    Article  CAS  PubMed  Google Scholar 

  14. Muraski, J. A. et al. Pim-1 regulates cardiomyocyte survival downstream of Akt. Nat. Med. 13, 1467–1475 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Penchala, S. C. et al. A biomimetic approach for enhancing the in vivo half-life of peptides. Nat. Chem. Biol. 11, 793–798 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Vo, T. N., Kasper, F. K. & Mikos, A. G. Strategies for controlled delivery of growth factors and cells for bone regeneration. Adv. Drug Deliv. Rev. 64, 1292–1309 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dingal, P. C. & Discher, D. E. Combining insoluble and soluble factors to steer stem cell fate. Nat. Mater. 13, 532–537 (2014).

    Article  CAS  PubMed  Google Scholar 

  18. Burdick, J. A., Mauck, R. L. & Gerecht, S. To serve and protect: hydrogels to improve stem cell-based therapies. Cell Stem Cell 18, 13–15 (2016).

    Article  CAS  PubMed  Google Scholar 

  19. Davis, M. E. et al. Local myocardial insulin-like growth factor 1 (IGF-1) delivery with biotinylated peptide nanofibers improves cell therapy for myocardial infarction. Proc. Natl Acad. Sci. USA 103, 8155–8160 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Meghani, N. M., Amin, H. H. & Lee, B. J. Mechanistic applications of click chemistry for pharmaceutical drug discovery and drug delivery. Drug Discov. Today 22, 1604–1619 (2017).

    Article  CAS  PubMed  Google Scholar 

  21. Drzewiecki, K. E., Grisham, D. R., Parmar, A. S., Nanda, V. & Shreiber, D. I. Circular dichroism spectroscopy of collagen fibrillogenesis: a new use for an old technique. Biophys. J. 111, 2377–2386 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hubbell, J. A. Cellular matrices: physiology in microfluidics. Nat. Mater. 7, 609–610 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Zhu, J. L. & Kaufman, L. J. Collagen I self-assembly: revealing the developing structures that generate turbidity. Biophys. J. 106, 1822–1831 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jin, E. et al. Acid-active cell-penetrating peptides for in vivo tumor-targeted drug delivery. J. Am. Chem. Soc. 135, 933–940 (2013).

    Article  CAS  PubMed  Google Scholar 

  25. Xu, P. et al. Targeted charge-reversal nanoparticles for nuclear drug delivery. Angew. Chem. Int. Ed. Engl. 46, 4999–5002 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Lee, S. S. et al. Sulfated glycopeptide nanostructures for multipotent protein activation. Nat. Nanotechnol. 12, 821–829 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Niiyama, H., Huang, N. F., Rollins, M. D. & Cooke, J. P. Murine model of hindlimb ischemia. J. Vis. Exp. 23, e1035 (2009).

    Google Scholar 

  28. Hu, S. et al. Effects of cellular origin on differentiation of human induced pluripotent stem cell-derived endothelial cells. JCI Insight 1, e85558 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Li, Z. et al. Imaging survival and function of transplanted cardiac resident stem cells. J. Am. Coll. Cardiol. 53, 1229–1240 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Smith, R. R. et al. Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens. Circulation 115, 896–908 (2007).

    Article  PubMed  Google Scholar 

  31. Lutolf, M. P., Gilbert, P. M. & Blau, H. M. Designing materials to direct stem-cell fate. Nature 462, 433–441 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kutschka, I. et al. Collagen matrices enhance survival of transplanted cardiomyoblasts and contribute to functional improvement of ischemic rat hearts. Circulation 114, I167–I173 (2006).

    PubMed  Google Scholar 

  33. Kraehenbuehl, T. P. et al. Human embryonic stem cell-derived microvascular grafts for cardiac tissue preservation after myocardial infarction. Biomaterials 32, 1102–1109 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Simpson, D., Liu, H., Fan, T. H., Nerem, R. & Dudley, S. C. Jr. A tissue engineering approach to progenitor cell delivery results in significant cell engraftment and improved myocardial remodeling. Stem Cells 25, 2350–2357 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Cao, F. et al. In vivo visualization of embryonic stem cell survival, proliferation, and migration after cardiac delivery. Circulation 113, 1005–1014 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Sun, N. et al. Feeder-free derivation of induced pluripotent stem cells from adult human adipose stem cells. Proc. Natl Acad. Sci. USA 106, 15720–15725 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank J. Tao for her assistance with the performance of the bindingassay detailed in Supplementary Fig. 16. We would also like to thank Stanford Bio-X (A.S.L.), the National Institutes of Health (grants HL133272 (J.C.W.), HL132875 (J.C.W.),113006 (J.C.W.), EB009035 (J.C.W.) and HL134830-01 (P.K.N.)) and California Institute of Regenerative Medicine (CIRM; grants DR2-05394 and RT3-07798 (J.C.W.)) for funding support forthis study.

Author information

Authors and Affiliations

Authors

Contributions

A.S.L., M.I., M.A.L., J.R. and P.K.N. conceived, performed and interpreted the experiments and wrote the manuscript. W.S., M.I. and J.R. formulated and produced the col×D×pep cocktail and characterized it by biophysical and biochemical methods. X.Z., S.P., W.Y.Z. and M.B.P. injected col×D×pep with cells into the animals and performed BLI. A.V.M. performed atomic force microscopy, dynamic light scattering and Raman experiments. X.Z., X.Q., S.P., W.X.H., N.G.K. and W.Y.Z. performed BLI, MRI, echo, Doppler assays and data analysis. S.P., V.S.F., W.Y.Z. and A.D.E. performed the western blot and immunostaining experiments. E.L. performed RNA sequencing. C.K.F.C. performed dissection and fluorescence microscopy experiments and provided experimental advice. P.K.N. performed the imaging experiments and data analysis, provided experimental advice and contributed to manuscript writing. J.R. conceived col×D×pep cocktail formulation, provided experimental advice and contributed to manuscript writing. V.R.P. performed BMMNCs culture. J.C.W. conceived the idea, provided experimental advice and funding support, and contributed to manuscript writing.

Corresponding authors

Correspondence to Patricia K. Nguyen, Jayakumar Rajadas or Joseph C. Wu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary methods, figures, tables and references.

Life Sciences Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, A.S., Inayathullah, M., Lijkwan, M.A. et al. Prolonged survival of transplanted stem cells after ischaemic injury via the slow release of pro-survival peptides from a collagen matrix. Nat Biomed Eng 2, 104–113 (2018). https://doi.org/10.1038/s41551-018-0191-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41551-018-0191-4

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research