Abstract

Positron emission tomography–computed tomography (PET–CT) is the most sensitive molecular imaging modality, but it does not easily allow for rapid temporal acquisition. Ultrafast ultrasound imaging (UUI)—a recently introduced technology based on ultrasonic holography—leverages frame rates of up to several thousand images per second to quantitatively map, at high resolution, haemodynamic, biomechanical, electrophysiological and structural parameters. Here, we describe a pre-clinical scanner that registers PET–CT and UUI volumes acquired simultaneously and offers multiple combinations for imaging. We demonstrate that PET–CT–UUI allows for simultaneous images of the vasculature and metabolism during tumour growth in mice and rats, as well as for synchronized multi-modal cardiac cine-loops. Combined anatomical, functional and molecular imaging with PET–CT–UUI represents a high-performance and clinically translatable technology for biomedical research.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from $8.99

All prices are NET prices.

Additional information

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Weissleder, R. & Pittet, M. J. Imaging in the era of molecular oncology. Nature 452, 580–589 (2008).

  2. 2.

    Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

  3. 3.

    Beyer, T. et al. A combined PET/CT scanner for clinical oncology. J. Nucl. Med. 41, 1369–1379 (2000).

  4. 4.

    Hasegawa, B. H. et al. Dual-modality imaging of cancer with SPECT/CT. Technol. Cancer Res. Treat. 1, 449–458 (2002).

  5. 5.

    Schmand, M. et al. BrainPET: first human tomograph for simultaneous (functional) PET and MR imaging. J. Nucl. Med. 48, 45P (2007).

  6. 6.

    Judenhofer, M. S. et al. Simultaneous PET–MRI: a new approach for functional and morphological imaging. Nat. Med. 14, 459–465 (2008).

  7. 7.

    Mace, E. et al. Functional ultrasound imaging of the brain. Nat. Methods 8, 662–664 (2011).

  8. 8.

    Errico, C. et al. Ultrafast ultrasound localization microscopy for deep super-resolution vascular imaging. Nature 527, 499–502 (2015).

  9. 9.

    Sieu, L.-A. et al. EEG and functional ultrasound imaging in mobile rats. Nat. Methods 12, 831–834 (2015).

  10. 10.

    Osmanski, B.-F., Pezet, S., Ricobaraza, A., Lenkei, Z. & Tanter, M. Functional ultrasound imaging of intrinsic connectivity in the living rat brain with high spatiotemporal resolution. Nat. Commun. 5, 5023 (2014).

  11. 11.

    Herholz, K. & Ebmeier, K. Clinical amyloid imaging in Alzheimer’s disease. Lancet Neurol. 10, 667–670 (2011).

  12. 12.

    Han, S. et al. Subregional pattern of striatal dopamine transporter loss on 18F FP-CIT positron emission tomography in patients with pure akinesia with gait freezing. JAMA Neurol. 73, 1477–1484 (2016).

  13. 13.

    Irkle, A. et al. Identifying active vascular microcalcification by (18)F-sodium fluoride positron emission tomography. Nat. Commun. 6, 7495 (2015).

  14. 14.

    Molecular Imaging and Contrast Agent Database (MICAD) (National Center for Biotechnology Information, Bethesda, MD, 2004); https://www.ncbi.nlm.nih.gov/books/NBK5330/

  15. 15.

    Tanter, M. & Fink, M. Ultrafast imaging in biomedical ultrasound. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 61, 102–119 (2014).

  16. 16.

    Tanter, M. et al. Quantitative assessment of breast lesion viscoelasticity: initial clinical results using supersonic shear imaging. Ultrasound Med. Biol. 34, 1373–1386 (2008).

  17. 17.

    Provost, J., Lee, W.-N., Fujikura, K. & Konofagou, E. E. Imaging the electromechanical activity of the heart in vivo. Proc. Natl. Acad. Sci. USA 108, 8565–8570 (2011).

  18. 18.

    Imbault, M. et al. Robust sound speed estimation for ultrasound-based hepatic steatosis assessment. Phys. Med. Biol. 62, 3582–3598 (2017).

  19. 19.

    Fernández-Sánchez, M. E. et al. Mechanical induction of the tumorigenic β-catenin pathway by tumour growth pressure. Nature 523, 92–95 (2015).

  20. 20.

    Demené, C. et al. 4D microvascular imaging based on ultrafast Doppler tomography. NeuroImage 127, 472–483 (2016).

  21. 21.

    Provost, J. et al. 3D ultrafast ultrasound imaging in vivo. Phys. Med. Biol. 59, L1–L13 (2014).

  22. 22.

    Timmers, H. J. L. M. et al. Superiority of fluorodeoxyglucose positron emission tomography to other functional imaging techniques in the evaluation of metastatic SDHB-associated pheochromocytoma and paraganglioma. J. Clin. Oncol. 25, 2262–2269 (2007).

  23. 23.

    Favier, J. et al. The Warburg effect is genetically determined in inherited pheochromocytomas. PLoS ONE 4, e7094 (2009).

  24. 24.

    Letouzé, E. et al. SDH mutations establish a hypermethylator phenotype in paraganglioma. Cancer Cell. 23, 739–752 (2013).

  25. 25.

    Lussey-Lepoutre, C. et al. In vivo detection of succinate by magnetic resonance spectroscopy as a hallmark of SDHx mutations in paraganglioma. Clin. Cancer Res. 22, 1120–1129 (2016).

  26. 26.

    Pouysségur, J., Franchi, A. & Pagès, G. pHi, aerobic glycolysis and vascular endothelial growth factor in tumour growth. Novartis Found. Symp. 240, 186–196 (2001).

  27. 27.

    Pouysségur, J., Franchi, A., Salomon, J. C. & Silvestre, P. Isolation of a Chinese hamster fibroblast mutant defective in hexose transport and aerobic glycolysis: its use to dissect the malignant phenotype. Proc. Natl. Acad. Sci. USA 77, 2698–2701 (1980).

  28. 28.

    Franchi, A., Silvestre, P. & Pouysségur, J. A genetic approach to the role of energy metabolism in the growth of tumor cells: tumorigenicity of fibroblast mutants deficient either in glycolysis or in respiration. Int. J. Cancer 27, 819–827 (1981).

  29. 29.

    Osmanski, B.-F. et al. Ultrafast Doppler imaging of blood flow dynamics in the myocardium. IEEE Trans. Med. Imaging 31, 1661–1668 (2012).

  30. 30.

    Pernot, M. et al. Shear wave imaging of passive diastolic myocardial stiffness: stunned versus infarcted myocardium. JACC Cardiovasc. Imaging 9, 1023–1030 (2016).

  31. 31.

    Pernot, M. et al. Real-time assessment of myocardial contractility using shear wave imaging. J. Am. Coll. Cardiol. 58, 65–72 (2011).

  32. 32.

    Porter, T. R. & Xie, F. Myocardial perfusion imaging with contrast ultrasound.JACC Cardiovasc. Imaging 3, 176–187 (2010).

  33. 33.

    Papadacci, C., Tanter, M., Pernot, M. & Fink, M. Ultrasound backscatter tensor imaging (BTI): analysis of the spatial coherence of ultrasonic speckle in anisotropic soft tissues. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 61, 986–996 (2014).

  34. 34.

    Maresca, D. et al. Noninvasive imaging of the coronary vasculature using ultrafast ultrasound. JACC Cardiovasc. Imaging https://doi.org/10.1016/j.jcmg.2017.05.021 (2017).

  35. 35.

    Piert, M. et al. 18F-choline PET/MRI: the additional value of PET for MRI-guided transrectal prostate biopsies. J. Nucl. Med. 57, 1065–1070 (2016).

  36. 36.

    Porporato, P. E., Dhup, S., Dadhich, R. K., Copetti, T. & Sonveaux, P. Anticancer targets in the glycolytic metabolism of tumors: a comprehensive review. Front. Pharmacol. 2, 49 (2011).

  37. 37.

    Sonveaux, P. et al. Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. J. Clin. Invest. 118, 3930–3942 (2008).

  38. 38.

    Konofagou, E. E., D’hooge, J. & Ophir, J. Myocardial elastography—a feasibility study in vivo. Ultrasound Med. Biol. 28, 475–482 (2002).

  39. 39.

    Martín, A. et al. Imaging of perfusion, angiogenesis, and tissue elasticity after stroke. J. Cereb. Blood Flow. Metab. 32, 1496–1507 (2012).

  40. 40.

    Ostergaard, L. et al. The relationship between tumor blood flow, angiogenesis, tumor hypoxia, and aerobic glycolysis. Cancer Res. 73, 5618–5624 (2013).

  41. 41.

    Schwaab, J. et al. First steps toward ultrasound-based motion compensation for imaging and therapy: calibration with an optical system and 4D PET imaging. Front. Oncol. 5, 258 (2015).

  42. 42.

    Walker, W. F. & Trahey, G. E.A fundamental limit on the performance of correlation based phase correction and flow estimation techniques. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 41, 644–654 (1994).

  43. 43.

    Provost, J., Thiébaut, S., Luo, J. & Konofagou, E. E. Single-heartbeat electromechanical wave imaging with optimal strain estimation using temporally-unequispaced acquisition sequences. Phys. Med. Biol. 57, 1095–1112 (2012).

  44. 44.

    Hingot, V., Errico, C., Tanter, M. & Couture, O. Subwavelength motion-correction for ultrafast ultrasound localization microscopy. Ultrasonics 77, 17–21 (2017).

  45. 45.

    Luo, J. & Konofagou, E. E.High-frame rate, full-view myocardial elastography with automated contour tracking in murine left ventricles in vivo. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 55, 240–248 (2008).

  46. 46.

    Lee, W.-N., Provost, J., Fujikura, K., Wang, J. & Konofagou, E. E. In vivo study of myocardial elastography under graded ischemia conditions. Phys. Med. Biol. 56, 1155–1172 (2011).

  47. 47.

    Denarie, B. et al. Coherent plane wave compounding for very high frame rate ultrasonography of rapidly moving targets. IEEE Trans. Med. Imaging 32, 1265–1276 (2013).

  48. 48.

    Szanda, I. et al. National Electrical Manufacturers Association NU-4 performance evaluation of the PET component of the NanoPET/CT preclinical PET/CT scanner. J. Nucl. Med. 52, 1741–1747 (2011).

  49. 49.

    Styner, M. & Gerig, G. Evaluation of 2D/3D Bias Correction with 1+ 1ES-Optimization (ETH, Zurich, 1997).

  50. 50.

    Wells, W. M., Viola, P., Atsumi, H., Nakajima, S. & Kikinis, R. Multi-modal volume registration by maximization of mutual information. Med. Image Anal. 1, 35–51 (1996).

  51. 51.

    Montaldo, G., Tanter, M., Bercoff, J., Benech, N. & Fink, M. Coherent plane-wave compounding for very high frame rate ultrasonography and transient elastography. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 56, 489–506 (2009).

  52. 52.

    Bercoff, J. et al. Ultrafast compound Doppler imaging: providing full blood flow characterization. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 58, 134–147 (2011).

  53. 53.

    Mace, E. et al. Functional ultrasound imaging of the brain: theory and basic principles. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 60, 492–506 (2013).

  54. 54.

    Demene, C. et al. Spatiotemporal clutter filtering of ultrafast ultrasound data highly increases Doppler and fUltrasound sensitivity. IEEE Trans. Med. Imaging 34, 2271–2285 (2015).

  55. 55.

    Wu, I., Wang, H., Huso, D. & Wahl, R. L. Optimal definition of biological tumor volume using positron emission tomography in an animal model. EJNMMI Res. 5, 58 (2015).

Download references

Acknowledgements

This study was supported by France Life Imaging grant ANR-11-INBS-0006. The authors are grateful to O. Clément and A. Tedgui for constant support, and to K. Tzavella, G. Leenders, L. Bao and X. Zhang for help with the image co-registration software. This work was supported in part by LABEX WIFI (Laboratory of Excellence ANR-10-LABX-24) within the French programme 'Investments for the Future' under reference ANR-10-IDEX-0001-02 PSL and by a grant from the Plan Cancer Physicancer programme BIMUPET (C16025KS). In vivo imaging was performed at the Life Imaging Facility of Paris Descartes University (Plateforme Imageries du Vivant), supported by France Life Imaging (grant ANR-11-INBS-0006) and Infrastructures Biologie-Santé. The project also received the support of the Institut National de la Santé et de la Recherche Médicale (Inserm) Technology Research Accelerator in Biomedical Ultrasound.

Author information

Author notes

  1. Jean Provost and Anikitos Garofalakis contributed equally to this work.

  2. Mickael Tanter and Bertrand Tavitian jointly supervised this work.

Affiliations

  1. Institut Langevin, Ecole Supérieure de Physique et de Chimie Industrielles, Paris Sciences and Letters Research University CNRS UMR 7587 Inserm U979, Inserm Technology Research Accelerator in Biomedical Ultrasound, Paris, France

    • Jean Provost
    • , Béatrice Berthon
    • , Mafalda Correia
    • , Mathieu Pernot
    •  & Mickael Tanter
  2. Inserm, UMR970, Paris Cardiovascular Research Center, Paris, France

    • Anikitos Garofalakis
    • , Joevin Sourdon
    • , Damien Bouda
    • , Thomas Viel
    • , Mailyn Perez-Liva
    • , Charlotte Lussey-Lepoutre
    • , Judith Favier
    •  & Bertrand Tavitian
  3. Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris, France

    • Anikitos Garofalakis
    • , Joevin Sourdon
    • , Damien Bouda
    • , Thomas Viel
    • , Mailyn Perez-Liva
    • , Judith Favier
    •  & Bertrand Tavitian
  4. Faculté de Médecine, Université Pierre et Marie Curie, Paris, France

    • Charlotte Lussey-Lepoutre
  5. Nuclear Medicine Department, Pitié-Salpêtrière Hospital, Paris, France

    • Charlotte Lussey-Lepoutre
  6. Faculté de Médecine, Université de Nice Sophia Antipolis, Nice, France

    • Johanna Chiche
  7. Équipe Contrôle Métabolique des Morts Cellulaires, Inserm, U1065, Centre Méditerranéen de Médecine Moléculaire, Nice, France

    • Johanna Chiche
  8. Institute for Research on Cancer and Aging, Université de Nice Sophia Antipolis, Centre Antoine Lacassagne, Nice, France

    • Jacques Pouysségur
  9. Department of Medical Biology, Centre Scientifique de Monaco, Monaco, Monaco

    • Jacques Pouysségur
  10. Department of Radiology, Georges Pompidou European Hospital, Paris, France

    • Bertrand Tavitian

Authors

  1. Search for Jean Provost in:

  2. Search for Anikitos Garofalakis in:

  3. Search for Joevin Sourdon in:

  4. Search for Damien Bouda in:

  5. Search for Béatrice Berthon in:

  6. Search for Thomas Viel in:

  7. Search for Mailyn Perez-Liva in:

  8. Search for Charlotte Lussey-Lepoutre in:

  9. Search for Judith Favier in:

  10. Search for Mafalda Correia in:

  11. Search for Mathieu Pernot in:

  12. Search for Johanna Chiche in:

  13. Search for Jacques Pouysségur in:

  14. Search for Mickael Tanter in:

  15. Search for Bertrand Tavitian in:

Contributions

J.Pr., A.G., M.T. and B.T. designed the experiments. J.Pr., A.G., J.S., D.B., B.B., T.V. and M.P.-L. performed the experiments. J.Pr., A.G., J.S., D.B., B.B., T.V., M.P.-L., M.C., M.P. and B.T. analysed the data. C.L.-L., J.F. and J.Po. provided original material to perform the experiments. J.Pr., A.G., M.T. and B.T. wrote the paper.

Competing interests

M.T. is a co-founder and shareholder of Supersonic Imagine. All other authors declare no competing financial interests.

Corresponding authors

Correspondence to Mickael Tanter or Bertrand Tavitian.

Supplementary information

Videos

  1. Supplementary Video 1

    PET–CT–ultrafast Doppler imaging of a xenografted tumour in a mouse

  2. Supplementary Video 2

    Evolution of FDG uptake and vasculature during the growth of a subcutaneous tumour in a mouse

  3. Supplementary Video 3

    Co-registered FDG uptake and vasculature in tumours with different metabolic pathways, and their corresponding bivariate histograms

  4. Supplementary Video 4

    Overlaid ECG-gated PET–UU B-mode cine-loops in two sections 3 mm apart in a rat heart

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41551-018-0188-z