Bacterial resistance to antibiotics has made it necessary to resort to using antibacterial drugs that have considerable toxicities. Here, we show that conjugation of vancomycin-loaded nanoparticles with the cyclic 9-amino-acid peptide CARGGLKSC (CARG), identified via phage display on Staphylococcus aureus (S. aureus) bacteria and through in vivo screening in mice with S. aureus-induced lung infections, increases the antibacterial activity of the nanoparticles in S. aureus-infected tissues and reduces the systemic dose needed, minimizing side effects. CARG binds specifically to S. aureus bacteria but not Pseudomonas bacteria in vitro, selectively accumulates in S. aureus-infected lungs and skin of mice but not in non-infected tissue and Pseudomonas-infected tissue, and significantly enhances the accumulation of intravenously injected vancomycin-loaded porous silicon nanoparticles bearing CARG in S. aureus-infected mouse lung tissue. The targeted nanoparticles more effectively suppress staphylococcal infections in vivo relative to equivalent doses of untargeted vancomycin nanoparticles or of free vancomycin. The therapeutic delivery of antibiotic-carrying nanoparticles bearing peptides targeting infected tissues may help combat difficult-to-treat infections.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Moran, G. J. et al. Methicillin-resistant S. aureus infections among patients in the emergency department. New Engl. J. Med. 355, 666–674 (2006).

  2. 2.

    Klevens, R. M. et al. Invasive methicillin-resistant Staphylococcus aureus infections in the United States. JAMA 298, 1763–1771 (2007).

  3. 3.

    Dantes, R. et al. National burden of invasive methicillin-resistant Staphylococcus aureus infections, United States, 2011. JAMA Intern. Med. 173, 1970–1978 (2013).

  4. 4.

    Moellering, R. C. MRSA: the first half century. J. Antimicrob. Chemother. 67, 4–11 (2012).

  5. 5.

    de Hoog, M., Mouton, J. W. & van den Anker, J. N. Vancomycin: pharmacokinetics and administration regimens in neonates. Clin. Pharmacokinet. 43, 417–440 (2004).

  6. 6.

    Pai, M. P., Mercier, R. C. & Koster, S. A. Epidemiology of vancomycin-induced neutropenia in patients receiving home intravenous infusion therapy. Ann. Pharmacother. 40, 224–228 (2006).

  7. 7.

    Sorrell, T. C. & Collignon, P. J. A prospective study of adverse reactions associated with vancomycin therapy. J. Antimicrob. Chemother. 16, 235–241 (1985).

  8. 8.

    Otto, M. Basis of virulence in community-associated methicillin-resistant Staphylococcus aureus. Annu. Rev. Microbiol. 64, 143–162 (2010).

  9. 9.

    Inoshima, I. et al. A Staphylococcus aureus pore-forming toxin subverts the activity of ADAM10 to cause lethal infection in mice. Nat. Med. 17, 1310–1314 (2011).

  10. 10.

    Radovic-Moreno, A. F. et al. Surface charge-switching polymeric nanoparticles for bacterial cell wall-targeted delivery of antibiotics. ACS Nano 6, 4279–4287 (2012).

  11. 11.

    Pinto-Alphandary, H., Andremont, A. & Couvreur, P. Targeted delivery of antibiotics using liposomes and nanoparticles: research and applications. Int. J. Antimicrob. Agents 13, 155–168 (2000).

  12. 12.

    Courtney, C. M. et al. Photoexcited quantum dots for killing multidrug-resistant bacteria. Nat. Mater. 15, 529–534 (2016).

  13. 13.

    Gao, W., Thamphiwatana, S., Angsantikul, P. & Zhang, L. Nanoparticle approaches against bacterial infections. Nanomed. Nanobiotechnol. 6, 532–547 (2014).

  14. 14.

    Morones-Ramirez, J. R., Winkler, J. A., Spina, C. S. & Collins, J. J. Silver enhances antibiotic activity against gram-negative bacteria. Sci. Transl. Med. 5, 190ra181 (2013).

  15. 15.

    Low, P. S., Henne, W. A. & Doorneweerd, D. D. Discovery and development of folic-acid-based receptor targeting for imaging and therapy of cancer and inflammatory diseases. Acc. Chem. Res. 41, 120–129 (2008).

  16. 16.

    Kukowska-Latallo, J. F. et al. Nanoparticle targeting of anticancer drug improves therapeutic response in animal model of human epithelial cancer. Cancer Res. 65, 5317–5324 (2005).

  17. 17.

    Kell, A. J. et al. Vancomycin-modified nanoparticles for efficient targeting and preconcentration of gram-positive and gram-negative bacteria. ACS Nano 2, 1777–1788 (2008).

  18. 18.

    Simón-Gracia, L. et al. iRGD peptide conjugation potentiates intraperitoneal tumor delivery of paclitaxel with polymersomes. Biomaterials 104, 247–257 (2016).

  19. 19.

    Sugahara, K. N. et al. Coadministration of a tumor-penetrating peptide enhances the efficacy of cancer drugs. Science 328, 1031–1035 (2010).

  20. 20.

    Lehar, S. M. et al. Novel antibody–antibiotic conjugate eliminates intracellular S. aureus. Nature 527, 323–328 (2015).

  21. 21.

    Sailor, M. J. & Park, J.-H. Hybrid nanoparticles for detection and treatment of cancer. Adv. Mater. 24, 3779–3802 (2012).

  22. 22.

    Park, J.-H. et al. Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nat. Mater. 8, 331–336 (2009).

  23. 23.

    Joo, J. et al. Gated luminescence imaging of silicon nanoparticles. ACS Nano 9, 6233–6241 (2015).

  24. 24.

    Secret, E. et al. Antibody-functionalized porous silicon nanoparticles for vectorization of hydrophobic drugs. Adv. Healthc. Mater. 2, 718–727 (2013).

  25. 25.

    Serda, R. E. et al. Cellular association and assembly of a multistage delivery system. Small 6, 1329–1340 (2010).

  26. 26.

    Tasciotti, E. et al. Mesoporous silicon particles as a multistage delivery system for imaging and therapeutic applications. Nat. Nano 3, 151–157 (2008).

  27. 27.

    Ruoslahti, E. Peptides as targeting elements and tissue penetration devices for nanoparticles. Adv. Mater. 24, 3747–3756 (2012).

  28. 28.

    Laakkonen, P., Porkka, K., Hoffman, J. A. & Ruoslahti, E. A tumor-homing peptide with a targeting specificity related to lymphatic vessels. Nat. Med.. 8, 751–755 (2002).

  29. 29.

    Sugahara, K. N. et al. Tissue penetrating delivery of compounds and nanoparticles into tumors. Cancer Cell. 16, 510–520 (2009).

  30. 30.

    Mann, A. P. et al. A peptide for targeted, systemic delivery of imaging and therapeutic compounds into acute brain injuries. Nat. Commun. 7, 11980(2016).

  31. 31.

    DeMaria, T. F. & Kapral, F. A. Pulmonary infection of mice with Staphylococcus aureus. Infect. Immun. 21, 114–123 (1978).

  32. 32.

    King, M. D. et al. Emergence of community-acquired methicillin-resistant Staphylococcus aureus USA 300 clone as the predominant cause of skin and soft-tissue infections. Ann. Intern. Med. 144, 309–317 (2006).

  33. 33.

    Carnazza, S., Foti, C., Gioffrè, G., Felici, F. & Guglielmino, S. Specific and selective probes for Pseudomonas aeruginosa from phage-displayed random peptide libraries. Biosens. Bioelectron. 23, 1137–1144 (2008).

  34. 34.

    Thwaites, G. E. & Gant, V. Are bloodstream leukocytes Trojan horses for the metastasis of Staphylococcus aureus? Nat. Rev. Microbiol. 9, 215–222 (2011).

  35. 35.

    Gresham, H. D. et al. Survival of Staphylococcus aureus inside neutrophils contributes to infection. J. Immunol. 164, 3713–3722 (2000).

  36. 36.

    Anwar, S., Prince, L. R., Foster, S. J., Whyte, M. K. B. & Sabroe, I. The rise and rise of Staphylococcus aureus: laughing in the face of granulocytes. Clin. Exp. Immunol. 157, 216–224 (2009).

  37. 37.

    Garzoni, C. & Kelley, W. L. Staphylococcus aureus: new evidence for intracellular persistence. Trends Microbiol. 17, 59–65 (2009).

  38. 38.

    Proctor, R. A. et al. Small colony variants: a pathogenic form of bacteria that facilitates persistent and recurrent infections. Nat. Rev. Microbiol. 4, 295–305 (2006).

  39. 39.

    Foster, T. J. Immune evasion by staphylococci. Nat. Rev. Microbiol. 3, 948–958 (2005).

  40. 40.

    Kobayashi, S. D., Malachowa, N. & DeLeo, F. R. Pathogenesis of Staphylococcus aureus abscesses. Am. J. Pathol. 185, 1518–1527 (2015).

  41. 41.

    Daley, J. M., Thomay, A. A., Connolly, M. D., Reichner, J. S. & Albina, J. E. Use of Ly6G-specific monoclonal antibody to deplete neutrophils in mice. J. Leukoc. Biol. 83, 64–70 (2008).

  42. 42.

    Abed, N. et al. An efficient system for intracellular delivery of beta-lactam antibiotics to overcome bacterial resistance. Sci. Rep. 5, 13500 (2015).

  43. 43.

    Kang, J. et al. Self-sealing porous silicon-calcium silicate core–shell nanoparticles for targeted siRNA delivery to the injured brain. Adv. Mater. 28, 7962–7969 (2016).

  44. 44.

    Anselmo, A. C. et al. Delivering nanoparticles to lungs while avoiding liver and spleen through adsorption on red blood cells. ACS Nano 7, 11129–11137 (2013).

  45. 45.

    Choi, H. S. et al. Rapid translocation of nanoparticles from the lung airspaces to the body. Nat. Biotech. 28, 1300–1303 (2010).

  46. 46.

    Rogers, D. E. & Tompsett, R. The survival of staphylococci within human leukocytes. J. Exp. Med. 95, 209–230 (1952).

  47. 47.

    Garzoni, C. & Kelley, W. L. Return of the Trojan horse: intracellular phenotype switching and immune evasion by Staphylococcus aureus. EMBO Mol. Med. 3, 115–117 (2011).

  48. 48.

    Allen, T. M. & Cullis, P. R. Liposomal drug delivery systems: from concept to clinical applications. Adv. Drug. Deliv. Rev. 65, 36–48 (2013).

  49. 49.

    Joo, J. et al. Porous silicon-graphene oxide core-shell nanoparticles for targeted delivery of siRNA to the injured brain. Nanoscale Horiz. 1, 407–414 (2016).

  50. 50.

    Zhang, H. et al. Fabrication of a multifunctional nano-in-micro drug delivery platform by microfluidic templated encapsulation of porous silicon in polymer matrix. Adv. Mater. 26, 4497–4503 (2014).

  51. 51.

    Shen, J. et al. High capacity nanoporous silicon carrier for systemic delivery of gene silencing therapeutics. ACS Nano 7, 9867–9880 (2013).

  52. 52.

    Bhattacharjee, M. Chemistry of Antibiotics and Related Drugs (Springer Science and Business Media, New York, 2016).

  53. 53.

    Farber, B. F. & Moellering, R. C. Retrospective study of the toxicity of preparations of vancomycin from 1974 to 1981. Antimicrob. Agents Chemother. 23, 138–141 (1983).

  54. 54.

    Elting, L. S. et al. Mississippi mud in the 1990s. Cancer 83, 2597–2607 (1998).

  55. 55.

    Wilhelm, M. P. Vancomycin. Mayo Clin. Proc. 66, 1165–1170 (1991).

  56. 56.

    Wardenburg, J. B. & Schneewind, O. Vaccine protection against Staphylococcus aureus pneumonia. J. Exp. Med. 205, 287–294 (2008).

  57. 57.

    Teesalu, T., Sugahara, K. N. & Ruoslahti, E. in Methods in Enzymology Vol. 503 (eds. Wittrup, K. D. & Gregory, L. V.) 35–56 (Academic, San Diego, 2012).

  58. 58.

    Qin, Z., Joo, J., Gu, L. & Sailor, M. J.Size control of porous silicon nanoparticles by electrochemical perforation etching. Part. Part. Syst. Charact. 31, 252–256 (2014).

  59. 59.

    Joo, J., Cruz, J. F., Vijayakumar, S., Grondek, J. & Sailor, M. J. Photoluminescent porous Si/SiO2 core/shell nanoparticles prepared by borate oxidation. Adv. Funct. Mater. 24, 5688–5694 (2014).

  60. 60.

    Cai, W. & Chen, X. Preparation of peptide-conjugated quantum dots for tumor vasculature-targeted imaging. Nat. Protoc. 3, 89–96 (2008).

Download references


We thank V. R. Kotamraju for peptide synthesis and J. Ward for technical assistance. This work was supported by the Defense Advanced Research Projects Agency (DARPA) under Cooperative Agreement HR0011-13-2-0017, the National Science Foundation grant no. CBET-1603177 and in part by the National Institutes of Health, through contract no. R01 AI132413-01. The content of the information within this document does not necessarily reflect the position or the policy of the Government. This research was also supported in part by a grant from the Basic Science Research Program through the Korea NRF funded by the Ministry of Education (grant no. 2017R1D1A1B03035525), a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health and Welfare, Korea (grant no. HI14C1090), and by the European Union through the European Regional Development Fund (Project No. 2014-2020.4.01.15-0012).

Author information

Author notes

    • Gary B. Braun

    Present address: STEMCELL Technologies Inc., Vancouver, Canada

    • Zhi-Gang She

    Present address: Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China

  1. Sazid Hussain and Jinmyoung Joo contributed equally to this work.


  1. Cancer Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA

    • Sazid Hussain
    • , Gary B. Braun
    • , Zhi-Gang She
    • , Aman P. Mann
    • , Tambet Teesalu
    •  & Erkki Ruoslahti
  2. Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA

    • Jinmyoung Joo
    • , Dokyoung Kim
    •  & Michael J. Sailor
  3. Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea

    • Jinmyoung Joo
  4. Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul, Republic of Korea

    • Jinmyoung Joo
  5. Department of Nanoengineering, University of California, San Diego, La Jolla, CA, USA

    • Jinyoung Kang
    •  & Michael J. Sailor
  6. Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA, USA

    • Byungji Kim
    •  & Michael J. Sailor
  7. Laboratory of Cancer Biology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia

    • Tarmo Mölder
    •  & Tambet Teesalu
  8. Center for Nanomedicine, and Department of Cell, Molecular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, USA

    • Tambet Teesalu
    •  & Erkki Ruoslahti
  9. Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali- ChiBioFarAm, Università di Messina, Messina, Italy

    • Santina Carnazza
    •  & Salvatore Guglielmino


  1. Search for Sazid Hussain in:

  2. Search for Jinmyoung Joo in:

  3. Search for Jinyoung Kang in:

  4. Search for Byungji Kim in:

  5. Search for Gary B. Braun in:

  6. Search for Zhi-Gang She in:

  7. Search for Dokyoung Kim in:

  8. Search for Aman P. Mann in:

  9. Search for Tarmo Mölder in:

  10. Search for Tambet Teesalu in:

  11. Search for Santina Carnazza in:

  12. Search for Salvatore Guglielmino in:

  13. Search for Michael J. Sailor in:

  14. Search for Erkki Ruoslahti in:


S.H. performed phage display screening and validated the Staphylococcus-binding peptide. J.J., G.B.B. and D.K. designed, synthesized and characterized nanoparticles, performed in vitro experiments. S.H., J.J., G.B.B., Z.-G.S., J.K. and B.K. performed and analysed in vivo experiments. S.H., A.P.M., T.M. and T.T. performed Ion Torrent data analysis. S.C. and S.G. identified the Pseudomonas-binding peptide. S.H., J.J., G.B.B., D.K., B.K., J.K., M.J.S. and E.R. discussed and analysed data. S.H., J.J., M.J.S. and E.R. conceived the project, and wrote the manuscript. All authors read and approved the manuscript.

Competing interests

M.J.S. is a scientific founder of Spinnaker Biosciences, Inc., and has an equity interest in the company. Although the R01 AI132413-01 grant has been identified for conflict of interest management based on the overall scope of the project and its potential benefit to Spinnaker Biosciences, Inc., the research findings included in this particular publication may not necessarily relate to the interests of Spinnaker Biosciences, Inc. The terms of this arrangement have been reviewed and approved by the University of California, San Diego in accordance with its conflict of interest policies. All the other authors declare no competing financial interests.

Corresponding author

Correspondence to Erkki Ruoslahti.

Supplementary information

  1. Supplementary Information

    Supplementary figures, tables and references

  2. Life Sciences Reporting Summary

About this article

Publication history