Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Antibiotic-loaded nanoparticles targeted to the site of infection enhance antibacterial efficacy

Abstract

Bacterial resistance to antibiotics has made it necessary to resort to using antibacterial drugs that have considerable toxicities. Here, we show that conjugation of vancomycin-loaded nanoparticles with the cyclic 9-amino-acid peptide CARGGLKSC (CARG), identified via phage display on Staphylococcus aureus (S. aureus) bacteria and through in vivo screening in mice with S. aureus-induced lung infections, increases the antibacterial activity of the nanoparticles in S. aureus-infected tissues and reduces the systemic dose needed, minimizing side effects. CARG binds specifically to S. aureus bacteria but not Pseudomonas bacteria in vitro, selectively accumulates in S. aureus-infected lungs and skin of mice but not in non-infected tissue and Pseudomonas-infected tissue, and significantly enhances the accumulation of intravenously injected vancomycin-loaded porous silicon nanoparticles bearing CARG in S. aureus-infected mouse lung tissue. The targeted nanoparticles more effectively suppress staphylococcal infections in vivo relative to equivalent doses of untargeted vancomycin nanoparticles or of free vancomycin. The therapeutic delivery of antibiotic-carrying nanoparticles bearing peptides targeting infected tissues may help combat difficult-to-treat infections.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A schematic representation of the peptide library screening by in vivo phage display in an S. aureus-induced pneumonia model.
Fig. 2: The CARG peptide shows selective binding to cultured S. aureus in vitro and homes to infected lungs in vivo.
Fig. 3: CARG is highly specific in targeting S. aureus infections.
Fig. 4: CARG peptide homes to S. aureus bacteria at sites of infection and colocalizes with host phagocytic cells containing intracellular bacteria.
Fig. 5: Targeted in vivo delivery of nanoparticles to S. aureus-infected lungs.
Fig. 6: Targeted, infection-homing nanoparticles enhance antibiotic therapy.

Similar content being viewed by others

References

  1. Moran, G. J. et al. Methicillin-resistant S. aureus infections among patients in the emergency department. New Engl. J. Med. 355, 666–674 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Klevens, R. M. et al. Invasive methicillin-resistant Staphylococcus aureus infections in the United States. JAMA 298, 1763–1771 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Dantes, R. et al. National burden of invasive methicillin-resistant Staphylococcus aureus infections, United States, 2011. JAMA Intern. Med. 173, 1970–1978 (2013).

    PubMed  Google Scholar 

  4. Moellering, R. C. MRSA: the first half century. J. Antimicrob. Chemother. 67, 4–11 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. de Hoog, M., Mouton, J. W. & van den Anker, J. N. Vancomycin: pharmacokinetics and administration regimens in neonates. Clin. Pharmacokinet. 43, 417–440 (2004).

    Article  PubMed  Google Scholar 

  6. Pai, M. P., Mercier, R. C. & Koster, S. A. Epidemiology of vancomycin-induced neutropenia in patients receiving home intravenous infusion therapy. Ann. Pharmacother. 40, 224–228 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Sorrell, T. C. & Collignon, P. J. A prospective study of adverse reactions associated with vancomycin therapy. J. Antimicrob. Chemother. 16, 235–241 (1985).

    Article  CAS  PubMed  Google Scholar 

  8. Otto, M. Basis of virulence in community-associated methicillin-resistant Staphylococcus aureus. Annu. Rev. Microbiol. 64, 143–162 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. Inoshima, I. et al. A Staphylococcus aureus pore-forming toxin subverts the activity of ADAM10 to cause lethal infection in mice. Nat. Med. 17, 1310–1314 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Radovic-Moreno, A. F. et al. Surface charge-switching polymeric nanoparticles for bacterial cell wall-targeted delivery of antibiotics. ACS Nano 6, 4279–4287 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pinto-Alphandary, H., Andremont, A. & Couvreur, P. Targeted delivery of antibiotics using liposomes and nanoparticles: research and applications. Int. J. Antimicrob. Agents 13, 155–168 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Courtney, C. M. et al. Photoexcited quantum dots for killing multidrug-resistant bacteria. Nat. Mater. 15, 529–534 (2016).

    Article  CAS  PubMed  Google Scholar 

  13. Gao, W., Thamphiwatana, S., Angsantikul, P. & Zhang, L. Nanoparticle approaches against bacterial infections. Nanomed. Nanobiotechnol. 6, 532–547 (2014).

    Article  CAS  Google Scholar 

  14. Morones-Ramirez, J. R., Winkler, J. A., Spina, C. S. & Collins, J. J. Silver enhances antibiotic activity against gram-negative bacteria. Sci. Transl. Med. 5, 190ra181 (2013).

    Article  Google Scholar 

  15. Low, P. S., Henne, W. A. & Doorneweerd, D. D. Discovery and development of folic-acid-based receptor targeting for imaging and therapy of cancer and inflammatory diseases. Acc. Chem. Res. 41, 120–129 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Kukowska-Latallo, J. F. et al. Nanoparticle targeting of anticancer drug improves therapeutic response in animal model of human epithelial cancer. Cancer Res. 65, 5317–5324 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Kell, A. J. et al. Vancomycin-modified nanoparticles for efficient targeting and preconcentration of gram-positive and gram-negative bacteria. ACS Nano 2, 1777–1788 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Simón-Gracia, L. et al. iRGD peptide conjugation potentiates intraperitoneal tumor delivery of paclitaxel with polymersomes. Biomaterials 104, 247–257 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Sugahara, K. N. et al. Coadministration of a tumor-penetrating peptide enhances the efficacy of cancer drugs. Science 328, 1031–1035 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lehar, S. M. et al. Novel antibody–antibiotic conjugate eliminates intracellular S. aureus. Nature 527, 323–328 (2015).

    Article  CAS  PubMed  Google Scholar 

  21. Sailor, M. J. & Park, J.-H. Hybrid nanoparticles for detection and treatment of cancer. Adv. Mater. 24, 3779–3802 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Park, J.-H. et al. Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nat. Mater. 8, 331–336 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Joo, J. et al. Gated luminescence imaging of silicon nanoparticles. ACS Nano 9, 6233–6241 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Secret, E. et al. Antibody-functionalized porous silicon nanoparticles for vectorization of hydrophobic drugs. Adv. Healthc. Mater. 2, 718–727 (2013).

    Article  CAS  PubMed  Google Scholar 

  25. Serda, R. E. et al. Cellular association and assembly of a multistage delivery system. Small 6, 1329–1340 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tasciotti, E. et al. Mesoporous silicon particles as a multistage delivery system for imaging and therapeutic applications. Nat. Nano 3, 151–157 (2008).

    Article  CAS  Google Scholar 

  27. Ruoslahti, E. Peptides as targeting elements and tissue penetration devices for nanoparticles. Adv. Mater. 24, 3747–3756 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Laakkonen, P., Porkka, K., Hoffman, J. A. & Ruoslahti, E. A tumor-homing peptide with a targeting specificity related to lymphatic vessels. Nat. Med.. 8, 751–755 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Sugahara, K. N. et al. Tissue penetrating delivery of compounds and nanoparticles into tumors. Cancer Cell. 16, 510–520 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mann, A. P. et al. A peptide for targeted, systemic delivery of imaging and therapeutic compounds into acute brain injuries. Nat. Commun. 7, 11980(2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. DeMaria, T. F. & Kapral, F. A. Pulmonary infection of mice with Staphylococcus aureus. Infect. Immun. 21, 114–123 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. King, M. D. et al. Emergence of community-acquired methicillin-resistant Staphylococcus aureus USA 300 clone as the predominant cause of skin and soft-tissue infections. Ann. Intern. Med. 144, 309–317 (2006).

    Article  PubMed  Google Scholar 

  33. Carnazza, S., Foti, C., Gioffrè, G., Felici, F. & Guglielmino, S. Specific and selective probes for Pseudomonas aeruginosa from phage-displayed random peptide libraries. Biosens. Bioelectron. 23, 1137–1144 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Thwaites, G. E. & Gant, V. Are bloodstream leukocytes Trojan horses for the metastasis of Staphylococcus aureus? Nat. Rev. Microbiol. 9, 215–222 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Gresham, H. D. et al. Survival of Staphylococcus aureus inside neutrophils contributes to infection. J. Immunol. 164, 3713–3722 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Anwar, S., Prince, L. R., Foster, S. J., Whyte, M. K. B. & Sabroe, I. The rise and rise of Staphylococcus aureus: laughing in the face of granulocytes. Clin. Exp. Immunol. 157, 216–224 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Garzoni, C. & Kelley, W. L. Staphylococcus aureus: new evidence for intracellular persistence. Trends Microbiol. 17, 59–65 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Proctor, R. A. et al. Small colony variants: a pathogenic form of bacteria that facilitates persistent and recurrent infections. Nat. Rev. Microbiol. 4, 295–305 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Foster, T. J. Immune evasion by staphylococci. Nat. Rev. Microbiol. 3, 948–958 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Kobayashi, S. D., Malachowa, N. & DeLeo, F. R. Pathogenesis of Staphylococcus aureus abscesses. Am. J. Pathol. 185, 1518–1527 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Daley, J. M., Thomay, A. A., Connolly, M. D., Reichner, J. S. & Albina, J. E. Use of Ly6G-specific monoclonal antibody to deplete neutrophils in mice. J. Leukoc. Biol. 83, 64–70 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Abed, N. et al. An efficient system for intracellular delivery of beta-lactam antibiotics to overcome bacterial resistance. Sci. Rep. 5, 13500 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kang, J. et al. Self-sealing porous silicon-calcium silicate core–shell nanoparticles for targeted siRNA delivery to the injured brain. Adv. Mater. 28, 7962–7969 (2016).

    Article  CAS  PubMed  Google Scholar 

  44. Anselmo, A. C. et al. Delivering nanoparticles to lungs while avoiding liver and spleen through adsorption on red blood cells. ACS Nano 7, 11129–11137 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Choi, H. S. et al. Rapid translocation of nanoparticles from the lung airspaces to the body. Nat. Biotech. 28, 1300–1303 (2010).

    Article  CAS  Google Scholar 

  46. Rogers, D. E. & Tompsett, R. The survival of staphylococci within human leukocytes. J. Exp. Med. 95, 209–230 (1952).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Garzoni, C. & Kelley, W. L. Return of the Trojan horse: intracellular phenotype switching and immune evasion by Staphylococcus aureus. EMBO Mol. Med. 3, 115–117 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Allen, T. M. & Cullis, P. R. Liposomal drug delivery systems: from concept to clinical applications. Adv. Drug. Deliv. Rev. 65, 36–48 (2013).

    Article  CAS  PubMed  Google Scholar 

  49. Joo, J. et al. Porous silicon-graphene oxide core-shell nanoparticles for targeted delivery of siRNA to the injured brain. Nanoscale Horiz. 1, 407–414 (2016).

    Article  CAS  Google Scholar 

  50. Zhang, H. et al. Fabrication of a multifunctional nano-in-micro drug delivery platform by microfluidic templated encapsulation of porous silicon in polymer matrix. Adv. Mater. 26, 4497–4503 (2014).

    Article  CAS  PubMed  Google Scholar 

  51. Shen, J. et al. High capacity nanoporous silicon carrier for systemic delivery of gene silencing therapeutics. ACS Nano 7, 9867–9880 (2013).

    Article  CAS  PubMed  Google Scholar 

  52. Bhattacharjee, M. Chemistry of Antibiotics and Related Drugs (Springer Science and Business Media, New York, 2016).

    Book  Google Scholar 

  53. Farber, B. F. & Moellering, R. C. Retrospective study of the toxicity of preparations of vancomycin from 1974 to 1981. Antimicrob. Agents Chemother. 23, 138–141 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Elting, L. S. et al. Mississippi mud in the 1990s. Cancer 83, 2597–2607 (1998).

    Article  CAS  PubMed  Google Scholar 

  55. Wilhelm, M. P. Vancomycin. Mayo Clin. Proc. 66, 1165–1170 (1991).

    Article  CAS  PubMed  Google Scholar 

  56. Wardenburg, J. B. & Schneewind, O. Vaccine protection against Staphylococcus aureus pneumonia. J. Exp. Med. 205, 287–294 (2008).

    Article  CAS  PubMed Central  Google Scholar 

  57. Teesalu, T., Sugahara, K. N. & Ruoslahti, E. in Methods in Enzymology Vol. 503 (eds. Wittrup, K. D. & Gregory, L. V.) 35–56 (Academic, San Diego, 2012).

  58. Qin, Z., Joo, J., Gu, L. & Sailor, M. J.Size control of porous silicon nanoparticles by electrochemical perforation etching. Part. Part. Syst. Charact. 31, 252–256 (2014).

    Article  CAS  Google Scholar 

  59. Joo, J., Cruz, J. F., Vijayakumar, S., Grondek, J. & Sailor, M. J. Photoluminescent porous Si/SiO2 core/shell nanoparticles prepared by borate oxidation. Adv. Funct. Mater. 24, 5688–5694 (2014).

    Article  CAS  Google Scholar 

  60. Cai, W. & Chen, X. Preparation of peptide-conjugated quantum dots for tumor vasculature-targeted imaging. Nat. Protoc. 3, 89–96 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank V. R. Kotamraju for peptide synthesis and J. Ward for technical assistance. This work was supported by the Defense Advanced Research Projects Agency (DARPA) under Cooperative Agreement HR0011-13-2-0017, the National Science Foundation grant no. CBET-1603177 and in part by the National Institutes of Health, through contract no. R01 AI132413-01. The content of the information within this document does not necessarily reflect the position or the policy of the Government. This research was also supported in part by a grant from the Basic Science Research Program through the Korea NRF funded by the Ministry of Education (grant no. 2017R1D1A1B03035525), a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health and Welfare, Korea (grant no. HI14C1090), and by the European Union through the European Regional Development Fund (Project No. 2014-2020.4.01.15-0012).

Author information

Authors and Affiliations

Authors

Contributions

S.H. performed phage display screening and validated the Staphylococcus-binding peptide. J.J., G.B.B. and D.K. designed, synthesized and characterized nanoparticles, performed in vitro experiments. S.H., J.J., G.B.B., Z.-G.S., J.K. and B.K. performed and analysed in vivo experiments. S.H., A.P.M., T.M. and T.T. performed Ion Torrent data analysis. S.C. and S.G. identified the Pseudomonas-binding peptide. S.H., J.J., G.B.B., D.K., B.K., J.K., M.J.S. and E.R. discussed and analysed data. S.H., J.J., M.J.S. and E.R. conceived the project, and wrote the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Erkki Ruoslahti.

Ethics declarations

Competing interests

M.J.S. is a scientific founder of Spinnaker Biosciences, Inc., and has an equity interest in the company. Although the R01 AI132413-01 grant has been identified for conflict of interest management based on the overall scope of the project and its potential benefit to Spinnaker Biosciences, Inc., the research findings included in this particular publication may not necessarily relate to the interests of Spinnaker Biosciences, Inc. The terms of this arrangement have been reviewed and approved by the University of California, San Diego in accordance with its conflict of interest policies. All the other authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary figures, tables and references

Life Sciences Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussain, S., Joo, J., Kang, J. et al. Antibiotic-loaded nanoparticles targeted to the site of infection enhance antibacterial efficacy. Nat Biomed Eng 2, 95–103 (2018). https://doi.org/10.1038/s41551-017-0187-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41551-017-0187-5

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research