Targeted repair of heart injury by stem cells fused with platelet nanovesicles

Abstract

Stem cell transplantation, as used clinically, suffers from low retention and engraftment of the transplanted cells. Inspired by the ability of platelets to recruit stem cells to sites of injury on blood vessels, we hypothesized that platelets might enhance the vascular delivery of cardiac stem cells (CSCs) to sites of myocardial infarction injury. Here, we show that CSCs with platelet nanovesicles fused onto their surface membranes express platelet surface markers that are associated with platelet adhesion to injury sites. We also find that the modified CSCs selectively bind collagen-coated surfaces and endothelium-denuded rat aortas, and that in rat and porcine models of acute myocardial infarction the modified CSCs increase retention in the heart and reduce infarct size. Platelet-nanovesicle-fused CSCs thus possess the natural targeting and repairing ability of their parental cell types. This stem cell manipulation approach is fast, straightforward and safe, does not require genetic alteration of the cells, and should be generalizable to multiple cell types.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Platelet binding to myocardial infarction sites and the derivation of platelet nanovesicles.
Fig. 2: Generation and characterization of PNV-CSCs.
Fig. 3: The effects of PNV decoration on CSC viability and functions.
Fig. 4: PNV decoration promotes CSC binding to damaged rodent vasculatures.
Fig. 5: PNV decoration boosts CSC retention and therapeutic outcomes in rats with myocardial infarction.
Fig. 6: PNV-CSC therapy promotes myocyte proliferation and angiogenesis.
Fig. 7: The role of CD42b in targeting PNV-CSCs to MI injury.
Fig. 8: PNV decoration augments CSC retention in a porcine model of ischaemia/reperfusion.

References

  1. 1.

    Mozaffarian, D. et al. Heart disease and stroke statistics—2015 update: a report from the American Heart Association. Circulation 131, 29–322 (2015).

    Article  Google Scholar 

  2. 2.

    Madonna, R. et al. Cell-based therapies for myocardial repair and regeneration in ischemic heart disease and heart failure. Eur. Heart J. 37, 1789–1798 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Sepantafar, M. et al. Stem cells and injectable hydrogels: synergistic therapeutics in myocardial repair. Biotechnol. Adv. 34, 362–379 (2016).

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Weissman, I. L. Translating stem and progenitor cell biology to the clinic: barriers and opportunities. Science 287, 1442–1446 (2000).

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Cheng, K. et al. Magnetic antibody-linked nanomatchmakers for therapeutic cell targeting. Nat. Commun. 5, 4880 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Tongers, J. et al. Stem and progenitor cell-based therapy in ischaemic heart disease: promise, uncertainties, and challenges. Eur. Heart J. 32, 1197–1206 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    van der Spoel, T. I. et al. Human relevance of pre-clinical studies in stem cell therapy: systematic review and meta-analysis of large animal models of ischaemic heart disease. Cardiovasc. Res. 91, 649–658 (2011).

    Article  PubMed  Google Scholar 

  8. 8.

    Lippi, G. et al. Arterial thrombus formation in cardiovascular disease. Nat. Rev. Cardiol. 8, 502–512 (2011).

    Article  PubMed  Google Scholar 

  9. 9.

    Stellos, K. et al. Circulating platelet-progenitor cell coaggregate formation is increased in patients with acute coronary syndromes and augments recruitment of CD34+ cells in the ischaemic microcirculation. Eur. Heart J. 34, 2548–2556 (2013).

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Li, T. S. et al. Direct comparison of different stem cell types and subpopulations reveals superior paracrine potency and myocardial repair efficacy with cardiosphere-derived cells. J. Am. Coll. Cardiol. 59, 942–953 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Smith, R. R. et al. Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens. Circulation 115, 896–908 (2007).

    Article  PubMed  Google Scholar 

  12. 12.

    Cheng, K. et al. Magnetic targeting enhances engraftment and functional benefit of iron-labeled cardiosphere-derived cells in myocardial infarction. Circ. Res. 106, 1570–1581 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Lee, S. T. et al. Intramyocardial injection of autologous cardiospheres or cardiosphere-derived cells preserves function and minimizes adverse ventricular remodeling in pigs with heart failure post-myocardial infarction. J. Am. Coll. Cardiol. 57, 455–465 (2011).

    Article  PubMed  Google Scholar 

  14. 14.

    Cheng, K. et al. Human cardiosphere-derived cells from advanced heart failure patients exhibit augmented functional potency in myocardial repair. JACC Heart Fail. 2, 49–61 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Malliaras, K. et al. Intracoronary cardiosphere-derived cells after myocardial infarction: evidence of therapeutic regeneration in the final 1-year results of the CADUCEUS trial (cardiosphere-derived autologous stem cells to reverse ventricular dysfunction). J. Am. Coll. Cardiol. 63, 110–22 (2014).

    Article  PubMed  Google Scholar 

  16. 16.

    Makkar, R. R. et al. Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial. Lancet 379, 895–904 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Cheng, K. et al. Magnetic enhancement of cell retention, engraftment, and functional benefit after intracoronary delivery of cardiac-derived stem cells in a rat model of ischemia/reperfusion. Cell Transplant. 21, 1121–1135 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Kanazawa, H. et al. Cellular postconditioning: allogeneic cardiosphere-derived cells reduce infarct size and attenuate microvascular obstruction when administered after reperfusion in pigs with acute myocardial infarction. Circ. Heart Fail. 8, 322–332 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Nasiri, S. Infusible platelet membrane as a platelet substitute for transfusion: an overview. Blood Transfus. 11, 337–342 (2013).

    PubMed  PubMed Central  Google Scholar 

  20. 20.

    Hu, C. M. et al. Nanoparticle biointerfacing by platelet membrane cloaking. Nature 526, 118–121 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Cheng, K. et al. Brief report: mechanism of extravasation of infused stem cells. Stem Cells 30, 2835–2842 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Allen, T. A. et al. Angiopellosis as an alternative mechanism of cell extravasation. Stem Cells 35, 170–180 (2017).

    Article  PubMed  Google Scholar 

  23. 23.

    Gawaz, M. Role of platelets in coronary thrombosis and reperfusion of ischemic myocardium. Cardiovasc. Res. 61, 498–511 (2004).

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Xu, Y. et al. Activated platelets contribute importantly to myocardial reperfusion injury. Am. J. Physiol. Heart Circ. Physiol. 290, H692–699 (2006).

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Anselmo, A. C. et al. Platelet-like nanoparticles: mimicking shape, flexibility, and surface biology of platelets to target vascular injuries. ACS Nano 8, 11243–11253 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Vandergriff, A. C. et al. Magnetic targeting of cardiosphere-derived stem cells with ferumoxytol nanoparticles for treating rats with myocardial infarction. Biomaterials 35, 8528–8539 (2014).

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Li, T. S. et al. Cardiospheres recapitulate a niche-like microenvironment rich in stemness and cell-matrix interactions, rationalizing their enhanced functional potency for myocardial repair. Stem Cells 28, 2088–2098 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Li, C. et al. Allogenic dendritic cell and tumor cell fused vaccine for targeted imaging and enhanced immunotherapeutic efficacy of gastric cancer. Biomaterials 54, 177–187 (2015).

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Kawada, M. Vaccination of fusion cells of rat dendritic and carcinoma cells prevents tumor growth in vivo. Int. J. Cancer 105, 520–526 (2003).

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Lentz, B. R. Polymer-induced membrane fusion: potential mechanism and relation to cell fusion events. Chem. Phys. Lipids 73, 91–106 (1994).

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Huang, Y. et al. Fusions of tumor-derived endothelial cells with densritic cells induces antitumor immunity. Sci. Rep. 7, 46544 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Brown, A. C. et al. Molecular interference of fibrin’s divalent polymerization mechanism enables modulation of multiscale material properties. Biomaterials 49, 27–36 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Brown, A. C. et al. Ultrasoft microgels displaying emergent platelet-like behaviours. Nat. Mater. 13, 1108–1114 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Tang, J. et al. Heart repair using nanogel-encapsulated human cardiac stem cells in mice and pigs with myocardial infarction. ACS Nano 11, 9738–9749 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Tang, J. et al. Therapeutic microparticles functionalized with biomimetic cardiac stem cell membranes and secretome. Nat. Commun. 8, 13724 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by US National Institute of Health (HL123920 and HL137093), NC State University Chancellor’s Faculty Excellence Program, NC State Chancellor’s Innovation Fund, University of North Carolina General Assembly Research Opportunities Initiative grant and the National Natural Science Foundation of China (81370216, 81570274).

Author information

Affiliations

Authors

Contributions

J.T., T.S., K.H., P.-U.D. and K.C. designed the research, performed biochemical, cellular and animal experiments, analysed the data and drafted the paper. P.-U.D., Z.W., A.V., M.T.H., T.A., J.C., T.L., E.S., E.M., L.L., L.R., A.L., A.B., T.G.C., D.S., Z.G. and G.A.S. performed cellular and in vitro experiments, and/or provided comments to improve the paper. K.C. and J.Z. provided financial support. K.C. directed the research.

Corresponding author

Correspondence to Ke Cheng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Videos

Supplementary Video 1

Angiogram showing blood flow before ischaemia.

Supplementary Video 2

Angiogram showing the location of balloon inflation and blood flow during ischaemia.

Supplementary Video 3

Angiogram showing blood flow after ischaemia.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tang, J., Su, T., Huang, K. et al. Targeted repair of heart injury by stem cells fused with platelet nanovesicles. Nat Biomed Eng 2, 17–26 (2018). https://doi.org/10.1038/s41551-017-0182-x

Download citation

Further reading