Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Engineered commensal microbes for diet-mediated colorectal-cancer chemoprevention

An Author Correction to this article was published on 16 June 2020

This article has been updated

Abstract

Chemoprevention—the use of medication to prevent cancer—can be augmented by the consumption of produce enriched with natural metabolites. However, chemopreventive metabolites are typically inactive and have low bioavailability and poor host absorption. Here, we show that engineered commensal microbes can prevent carcinogenesis and promote the regression of colorectal cancer through a cruciferous vegetable diet. The engineered commensal Escherichia coli bound specifically to the heparan sulphate proteoglycan on colorectal cancer cells and secreted the enzyme myrosinase to transform host-ingested glucosinolates—natural components of cruciferous vegetables—to sulphoraphane, an organic small molecule with known anticancer activity. The engineered microbes coupled with glucosinolates resulted in >95% proliferation inhibition of murine, human and colorectal adenocarcinoma cell lines in vitro. We also show that murine models of colorectal carcinoma fed with the engineered microbes and the cruciferous vegetable diet displayed significant tumour regression and reduced tumour occurrence.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Eda-I1-HlpA for adenocarcinoma clearance.
Fig. 2: Screening for glucosinolate-converting myrosinase enzymes.
Fig. 3: In vitro screening for HlpA binding specificity.
Fig. 4: In vitro anticancer activity of engineered microbes.
Fig. 5: Treatment of induced CRC in a murine model.
Fig. 6: Post-treatment colorectal tissue analysis.

Similar content being viewed by others

Change history

  • 16 June 2020

    An amendment to this paper has been published and can be accessed via a link at the top of the paper.

References

  1. Howlander, N. et al. SEER Cancer Statistics Review, 1975–2011 (National Cancer Institute, Bethesda, MD, 2014).

  2. Wollowski, I., Rechkemmer, G. & Pool-Zobel, B. L. Protective role of probiotics and prebiotics in colon cancer. Am. J. Clin. Nutr. 73, 451S–455S (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Pietinen, P. et al. Diet and risk of colorectal cancer in a cohort of Finnish men. Cancer Causes Control 10, 387–396 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Liong, M.-T. Roles of probiotics and prebiotics in colon cancer prevention: postulated mechanisms and in-vivo evidence. Int. J. Mol. Sci. 9, 854–863 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. American Cancer Society Treatment of Colon Cancer, by Stage (2016); http://www.cancer.org/cancer/colonandrectumcancer/detailedguide/colorectal-cancer-treating-by-stage-colon#

  6. Donaldson, M. S. Nutrition and cancer: a review of the evidence for an anti-cancer diet. Nutr. J. 3, 1–21 (2004).

    Article  CAS  Google Scholar 

  7. Divisi, D., Di Tommaso, S., Salvemini, S., Garramone, M. & Crisci, R. Diet and cancer. Acta Biomed. 77, 118–123 (2006).

    PubMed  Google Scholar 

  8. Tortorella, S. M., Royce, S. G., Licciardi, P. V. & Karagiannis, T. C. Dietary sulforaphane in cancer chemoprevention: the role of epigenetic regulation and HDAC inhibition. Antioxid. Redox Signal. 22, 1382–1424 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Devi, J. R. & Thangam, E. B. Mechanisms of anticancer activity of sulforaphane from Brassica oleracea in HEp-2 human epithelial carcinoma cell line. Asian Pac. J. Cancer Prev. 13, 2095–2100 (2012).

    Article  PubMed  Google Scholar 

  10. Qazi, A. et al. Anticancer activity of a broccoli derivative, sulforaphane, in barrett adenocarcinoma: potential use in chemoprevention and as adjuvant in chemotherapy. Transl. Oncol. 3, 389–399 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Cramer, J. M. & Jeffery, E. H. Sulforaphane absorption and excretion following ingestion of a semi-purified broccoli powder rich in glucoraphanin and broccoli sprouts in healthy men. Nutr. Cancer 63, 196–201 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Li, Y. & Zhang, T. Targeting cancer stem cells with sulforaphane, a dietary component from broccoli and broccoli sprouts. Future Oncol. 9, 1097–1103 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. Saeidi, N. et al. Engineering microbes to sense and eradicate Pseudomonas aeruginosa, a human pathogen. Mol. Syst. Biol. 7, 521 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Hwang, I. Y. et al. Reprogramming microbes to be pathogen-seeking killers. ACS Synt. Biol. 3, 228–237 (2014).

    Article  CAS  Google Scholar 

  15. Duan, F. & March, J. C. Engineered bacterial communication prevents Vibrio cholerae virulence in an infant mouse model. Proc. Natl Acad. Sci. USA 107, 11260–11264 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Duan, F. F., Liu, J. H. & March, J. C. Engineered commensal bacteria reprogram intestinal cells into glucose-responsive insulin-secreting cells for the treatment of diabetes. Diabetes 64, 1794–1803 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ho, C. L., Hwang, I. Y., Loh, K. & Chang, M. W. Matrix-immobilized yeast for large-scale production of recombinant human lactoferrin. MedChemComm 6, 486–491 (2015).

    Article  CAS  Google Scholar 

  18. Danino, T. et al. Programmable probiotics for detection of cancer in urine. Sci. Transl. Med. 7, 289ra84 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Wu, H. C. et al. Autonomous bacterial localization and gene expression based on nearby cell receptor density. Mol. Syst. Biol. 9, 636 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Frahm, M. et al. Efficiency of conditionally attenuated Salmonella enterica serovar typhimurium in bacterium-mediated tumor therapy. MBio 6, e00254 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Pye, G., Evans, D. F., Ledingham, S. & Hardcastle, J. D. Gastrointestinal intraluminal pH in normal subjects and those with colorectal adenoma or carcinoma. Gut 31, 1355–1357 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Singh, N. R., Denissen, E. C., McKune, A. J. & Peters, E. M. Intestinal temperature, heart rate, and hydration status in multiday trail runners. Clin. J. Sport Med. 22, 311–318 (2012).

    Article  PubMed  Google Scholar 

  23. Gerlt, J. A. et al. Enzyme Function Initiative-Enzyme Similarity Tool (EFI-EST): a web tool for generating protein sequence similarity networks. Biochim. Biophys. Acta 1854, 1019–1037 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Burmeister, W. P. et al. The crystal structures of Sinapis alba myrosinase and a covalent glycosyl-enzyme intermediate provide insights into the substrate recognition and active-site machinery of an S-glycosidase. Structure 5, 663–675 (1997).

    Article  CAS  PubMed  Google Scholar 

  25. Naushad, M., Alothman, Z. A., Khan, A. B. & Ali, M. Effect of ionic liquid on activity, stability, and structure of enzymes: a review. Int. J. Biol. Macromol. 51, 555–560 (2012).

    Article  CAS  PubMed  Google Scholar 

  26. Strickler, S. S. et al. Protein stability and surface electrostatics: a charged relationship. Biochemistry 45, 2761–2766 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Botti, M. G., Taylor, M. G. & Botting, N. P. Studies on the mechanism of myrosinase. Investigation of the effect of glycosyl acceptors on enzyme activity. J. Biol. Chem. 270, 20530–20535 (1995).

    Article  CAS  PubMed  Google Scholar 

  28. Zhang, Y., Tang, L. & Gonzalez, V. Selected isothiocyanates rapidly induce growth inhibition of cancer cells. Mol. Cancer Ther. 2, 1045–1052 (2003).

    CAS  PubMed  Google Scholar 

  29. Lai, K. et al. Allyl isothiocyanate inhibits cell metastasis through suppression of the MAPK pathways in epidermal growth factor-stimulated HT29 human colorectal adenocarcinoma cells. Oncol. Rep. 31, 189–196 (2014).

    Article  CAS  PubMed  Google Scholar 

  30. Lau, W. S., Chen, T. & Wong, Y. S. Allyl isothiocyanate induces G2/M arrest in human colorectal adenocarcinoma SW620 cells through down-regulation of Cdc25B and Cdc25C. Mol. Med. Rep. 3, 1023–1030 (2010).

    CAS  PubMed  Google Scholar 

  31. Wagner, A. E., Boesch-Saadatmandi, C., Dose, J., Schultheiss, G. & Rimbach, G. Anti-inflammatory potential of allyl-isothiocyanate—role of Nrf2, NF-κB and microRNA-155. J. Cell. Mol. Med. 16, 836–843 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cheng, B. et al. Syndecan as cell surface receptors in cancer biology. A focus on their interaction with PDZ domain proteins. Front. Pharmacol. 7, 10 (2016).

    PubMed  PubMed Central  Google Scholar 

  33. Sanderson, R. D. et al. Enzymatic remodeling of heparan sulfate proteoglycans within the tumor microenvironment: growth regulation and the prospect of new cancer therapies. J. Cell. Biochem. 96, 897–905 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Rosen, S. D. & Lemjabbar-Alaoui, H. Sulf-2: an extracellular modulator of cell signaling and a cancer target candidate. Expert Opin. Ther. Targets 14, 935–949 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Li, Q. et al. Molecular characterization of an ice nucleation protein variant (InaQ) from Pseudomonas syringae and the analysis of its transmembrane transport activity in Escherichia coli. Int. J. Biol. Sci. 8, 1097–1108 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Neufert, C., Becker, C. & Neurath, M. F. An inducible mouse model of colon carcinogenesis for the analysis of sporadic and inflammation-driven tumor progression. Nat. Protoc. 2, 1998–2004 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. De Robertis, M. et al. The AOM/DSS murine model for the study of colon carcinogenesis: from pathways to diagnosis and therapy studies. J. Carcinog. 10, 9 (2011).

    Article  CAS  PubMed  Google Scholar 

  38. Haggar, F. A. & Boushey, R. P. Colorectal cancer epidemiology: incidence, mortality, survival, and risk factors. Clin. Colon Rectal Surg. 22, 191–197 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Schultz, M. Clinical use of E. coli Nissle 1917 in inflammatory bowel disease. Inflamm. Bowel Dis. 14, 1012–1018 (2008).

    Article  PubMed  Google Scholar 

  40. Newman, D. J. & Cragg, G. M. Microbial antitumor drugs: natural products of microbial origin as anticancer agents. Curr. Opin. Investig. Drugs 10, 1280–1296 (2009).

    CAS  PubMed  Google Scholar 

  41. Mathonnet, M. et al. Hallmarks in colorectal cancer: angiogenesis and cancer stem-like cells. World J. Gastroenterol. 20, 4189–4196 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Byrd, J. C. & Bresalier, R. S. Mucins and mucin binding proteins in colorectal cancer. Cancer Metastasis Rev. 23, 77–99 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Kuppusamy, P., Govindan, N., Yusoff, M. M. & Ichwan, S. J. A. Proteins are potent biomarkers to detect colon cancer progression. Saudi J. Biol. Sci. 24, 1212–1221 (2017).

    Article  CAS  PubMed  Google Scholar 

  44. Boleij, A. et al. Surface-exposed histone-like protein a modulates adherence of Streptococcus gallolyticus to colon adenocarcinoma cells. Infect. Immun. 77, 5519–5527 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. American Cancer Society Cancer Facts & Figures 2015 (2015); http://www.cancer.org/research/cancerfactsstatistics/cancerfactsfigures2015/

  46. Dienstmann, R., Salazar, R. & Tabernero, J. Personalizing colon cancer adjuvant therapy: selecting optimal treatments for individual patients. J. Clin. Oncol. 33, 1787–1796 (2015).

    Article  CAS  PubMed  Google Scholar 

  47. Pai, S. G. & Fuloria, J. Novel therapeutic agents in the treatment of metastatic colorectal cancer. World J. Gastrointest. Oncol. 8, 99–104 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  48. St Jean, A. T., Swofford, C. A., Panteli, J. T., Brentzel, Z. J. & Forbes, N. S. Bacterial delivery of Staphylococcus aureus α-hemolysin causes regression and necrosis in murine tumors. Mol. Ther. 22, 1266–1274 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Nemunaitis, J. et al. Pilot trial of genetically modified, attenuated Salmonella expressing the E. coli cytosine deaminase gene in refractory cancer patients. Cancer Gene Ther. 10, 737–744 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Teicher, B. A. & Andrews, P. A. Anticancer Drug Development Guide: Preclinical Screening, Clinical Trials, and Approval Vol. 2 (Humana, New York, USA, 2004).

Download references

Acknowledgements

We thank P. Han for comments on the manuscript. This work was supported by the Agency for Science, Technology and Research (A*STAR) of Singapore (112 177 0040), Synthetic Biology Initiative of the National University of Singapore (DPRT/943/09/14), Summit Research Program of the National University Health System (NUHSRO/2016/053/SRP/05) and US Defense Threat Reduction Agency (HDTRA1-13-0037). We recognize the administrative contributions of C. Chang, I. Y. Hwang, H. L. Pham, B. E. D. Buenaflor, S. J. David and A. Seok Ting to the pre-clinical study.

Author information

Authors and Affiliations

Authors

Contributions

C.L.H., A.K. and M.W.C. designed the study. C.L.H. performed the experiments. C.L.H., H.Q.T., K.H.L. and K.L.L. conducted the animal model experiments. C.L.H. and K.J.C. contributed to the microscopic images. C.L.H., J.P.T., W.S.Y., Y.S.L. and M.W.C. analysed the data. C.L.H. and M.W.C. wrote the manuscript. M.W.C. supervised the project. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Matthew Wook Chang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ho, C.L., Tan, H.Q., Chua, K.J. et al. Engineered commensal microbes for diet-mediated colorectal-cancer chemoprevention. Nat Biomed Eng 2, 27–37 (2018). https://doi.org/10.1038/s41551-017-0181-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41551-017-0181-y

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer