Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A dextran-based probe for the targeted magnetic resonance imaging of tumours expressing prostate-specific membrane antigen

Abstract

Safe imaging agents that are able to render the expression and distribution of cancer receptors, enzymes or other biomarkers would facilitate clinical screening of the disease. Here, we show that diamagnetic dextran particles that are coordinated to a urea-based targeting ligand for prostate-specific membrane antigen (PSMA) enable targeted magnetic resonance imaging (MRI) of the PSMA receptor. In a xenograft model of prostate cancer, micromolar concentrations of the dextran–ligand probe provided sufficient signal to specifically detect PSMA-expressing tumours via chemical exchange saturation transfer MRI. The dextran-based probe could be detected via the contrast that originated from dextran hydroxyl protons, thereby avoiding the need of chemical substitution for radioactive or metallic labelling. Because dextrans are currently used clinically, dextran-based contrast agents may help to extend receptor-targeted imaging to clinical MRI.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Mahajan, A. et al. Bench to bedside molecular functional imaging in translational cancer medicine: to image or to imagine? Clin. Radiol.70, 1060–1082 (2015).

    Article  CAS  PubMed  Google Scholar 

  2. Hajdu, I. et al. Cancer cell targeting and imaging with biopolymer-based nanodevices. Int. J. Pharm.441, 234–241 (2013).

    Article  CAS  PubMed  Google Scholar 

  3. Cohen, B., Dafni, H., Meir, G., Harmelin, A. & Neeman, M. Ferritin as an endogenous MRI reporter for noninvasive imaging of gene expression in C6 glioma tumors. Neoplasia7, 109–117 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Artemov, D., Mori, N., Ravi, R. & Bhujwalla, Z. M. Magnetic resonance molecular imaging of the HER-2/neu receptor. Cancer Res.63, 2723–2727 (2003).

    CAS  PubMed  Google Scholar 

  5. Tse, B. W. et al. PSMA-targeting iron oxide magnetic nanoparticles enhance MRI of preclinical prostate cancer. Nanomedicine (Lond.)10, 375–386 (2015).

    Article  CAS  Google Scholar 

  6. Banerjee, S. R. et al. Synthesis and evaluation of GdIII‐based magnetic resonance contrast agents for molecular imaging of prostate‐specific membrane antigen. Angew Chem. Int. Ed.54, 10778–10782 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pu, F. et al. Prostate-specific membrane antigen targeted protein contrast agents for molecular imaging of prostate cancer by MRI. Nanoscale8, 12668–12682 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Holmes, E. H. PSMA specific antibodies and their diagnostic and therapeutic use. Expert Opin. Investig. Drugs10, 511–519 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Ward, K. M., Aletras, A. H. & Balaban, R. S. A new class of contrast agents for MRI based on proton chemical exchange dependent saturation transfer (CEST). J. Magn. Reson.143, 79–87 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. van Zijl, P. C., Jones, C. K., Ren, J., Malloy, C. R. & Sherry, A. D. MRI detection of glycogen in vivo by using chemical exchange saturation transfer imaging (glycoCEST). Proc. Natl Acad. Sci. USA104, 4359–4364 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chan, K. W. et al. Natural D-glucose as a biodegradable MRI contrast agent for detecting cancer. Magn. Reson. Med.68, 1764–1773 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Walker-Samuel, S. et al. In vivo imaging of glucose uptake and metabolism in tumors. Nat. Med.19, 1067–1072 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Armstrong, J. K., Wenby, R. B., Meiselman, H. J. & Fisher, T. C. The hydrodynamic radii of macromolecules and their effect on red blood cell aggregation. Biophys. J.87, 4259–4270 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dreher, M. R. et al. Tumor vascular permeability, accumulation, and penetration of macromolecular drug carriers. J. Natl Cancer Inst.98, 335–344 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Chen, Y. et al. 2-(3-{1-carboxy-5-[(6-[18F]fluoro-pyridine-3-carbonyl)-amino]-pentyl}-ureido)-pen tanedioic acid, [18F]DCFPyL, a PSMA-based PET imaging agent for prostate cancer. Clin. Cancer Res.17, 7645–7653 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chandran, S. S., Banerjee, S. R., Mease, R. C., Pomper, M. G. & Denmeade, S. R. Characterization of a targeted nanoparticle functionalized with a urea-based inhibitor of prostate-specific membrane antigen (PSMA). Cancer Biol. Ther.7, 974–982 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Banerjee, S. R. et al. Sequential SPECT and optical imaging of experimental models of prostate cancer with a dual modality inhibitor of the prostate-specific membrane antigen. Angew. Chem. Int. Ed.50, 9167–9170 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Banerjee, S. R. et al. Effect of chelators on the pharmacokinetics of 99mTc-labeled imaging agents for the prostate-specific membrane antigen (PSMA). J. Med. Chem.56, 6108–6121 (2013).

    Article  PubMed Central  CAS  Google Scholar 

  19. Szabo, Z. et al. Initial evaluation of [18F]DCFPyL for prostate-specific membrane antigen (PSMA)-targeted PET imaging of prostate cancer. Mol. Imaging Biol.17, 565–574 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dubick, M. A. & Wade, C. E. A review of the efficacy and safety of 7.5% NaCl/6% dextran 70 in experimental animals and in humans. J. Trauma36, 323–330 (1994).

    Article  CAS  PubMed  Google Scholar 

  21. Cobb, J. G., Li, K., Xie, J., Gochberg, D. F. & Gore, J. C. Exchange-mediated contrast in CEST and spin-lock imaging. Magn. Reson. Imaging32, 28–40 (2014).

    Article  PubMed  Google Scholar 

  22. Kobayashi, H., Longmire, M. R., Ogawa, M. & Choyke, P. L. Rational chemical design of the next generation of molecular imaging probes based on physics and biology: mixing modalities, colors and signals. Chem. Soc. Rev.40, 4626–4648 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hedin, H. & Richter, W. Pathomechanisms of dextran-induced anaphylactoid/anaphylactic reactions in man. Int. Arch. Allergy Appl. Immunol.68, 122–126 (1982).

    Article  CAS  PubMed  Google Scholar 

  24. Kraft, D. et al. Immunoglobulin class and subclass distribution of dextran‐reactive antibodies in human reactors and non reactors to clinical dextran. Allergy37, 481–489 (1982).

    Article  CAS  PubMed  Google Scholar 

  25. Ljungström, K.-G. Dextran 40 therapy made safer by pretreatment with dextran 1. Plast. Reconstr. Surg.120, 337–340 (2007).

    Article  PubMed  CAS  Google Scholar 

  26. Zinderman, C. E., Landow, L. & Wise, R. P. Anaphylactoid reactions to dextran 40 and 70: reports to the United States Food and Drug Administration, 1969 to 2004. J. Vasc. Surg.43, 1004–1009 (2006).

    Article  PubMed  Google Scholar 

  27. Eroglu, M., Oner, E., Mutlu, E. & Bostan, M. Sugar based biopolymers in nanomedicine; new emerging era for cancer imaging and therapy. Curr. Top. Med. Chem.17, 1507–1520 (2017).

    Article  CAS  PubMed  Google Scholar 

  28. Banerjee, A. & Bandopadhyay, R. Use of dextran nanoparticle: a paradigm shift in bacterial exopolysaccharide based biomedical applications. Int. J. Biol. Macromol.87, 295–301 (2016).

    Article  CAS  PubMed  Google Scholar 

  29. Ljungstrom, K.-G. Dextran 40 therapy made safer by pretreatment with dextran 1. Plast. Reconstr. Surg.120, 337–340 (2007).

    Article  PubMed  CAS  Google Scholar 

  30. Danhauserriedl, S. et al. Phase I clinical and pharmacokinetic trial of dextran conjugated doxorubicin (Ad-70, Dox-Oxd). Invest. New Drugs11, 187–195 (1993).

    Article  CAS  Google Scholar 

  31. Varshosaz, J. Dextran conjugates in drug delivery. Expert Opin. Drug. Deliv.9, 509–523 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. Nevozhay, D. et al. Antitumor properties and toxicity of dextran–methotrexate conjugates are dependent on the molecular weight of the carrier. Anticancer Res.26, 1135–1143 (2006).

    CAS  PubMed  Google Scholar 

  33. Silver, D. A., Pellicer, I., Fair, W. R., Heston, W. D. & Cordon-Cardo, C. Prostate-specific membrane antigen expression in normal and malignant human tissues. Clin. Cancer Res.3, 81–85 (1997).

    CAS  PubMed  Google Scholar 

  34. Zhang, Y. et al. Chemical exchange saturation transfer (CEST) imaging with fast variably-accelerated sensitivity encoding (vSENSE). Magn. Reson. Med.77, 2225–2238 (2017).

    Article  CAS  PubMed  Google Scholar 

  35. Heo, H. Y. et al. Accelerating chemical exchange saturation transfer (CEST) MRI by combining compressed sensing and sensitivity encoding techniques. Magn. Reson. Med.77, 779–786 (2017).

    Article  CAS  PubMed  Google Scholar 

  36. Zhang, S. et al. Balanced steady-state free precession (bSSFP) from an effective field perspective: application to the detection of chemical exchange (bSSFPX). J. Magn. Reson.275, 55–67 (2017).

    Article  CAS  PubMed  Google Scholar 

  37. Banerjee, S. R. et al. A modular strategy to prepare multivalent inhibitors of prostate-specific membrane antigen (PSMA). Oncotarget2, 1244–1253 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Cheng, Y. & Prusoff, W. H. Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem. Pharmacol.22, 3099–3108 (1973).

    Article  CAS  PubMed  Google Scholar 

  39. Liu, G., Gilad, A. A., Bulte, J. W., van Zijl, P. C. & McMahon, M. T. High-throughput screening of chemical exchange saturation transfer MR contrast agents. Contrast Media Mol. Imaging5, 162–170 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. Li, Y. et al. CEST theranostics: label-free MR imaging of anticancer drugs. Oncotarget7, 6369–6378 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Kim, M., Gillen, J., Landman, B. A., Zhou, J. & van Zijl, P. Water saturation shift referencing (WASSR) for chemical exchange saturation transfer (CEST) experiments. Magn. Reson. Med.61, 1441–1450 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Chen, Y. et al. A PSMA-targeted theranostic agent for photodynamic therapy. J. Photochem. Photobiol. B167, 111–116 (2017).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the US National Institutues of Health grants U54CA151838, R21EB015609, R03EB021573, R01CA134675, R01CA184228, R01CA211087, R21CA215860, U01CA183031, P41EB024495, R01EB019934 and R01EB015032.

Author information

Authors and Affiliations

Authors

Contributions

G.L., S.R.B., M.G.P. and P.v.Z. conceived and designed the experiments. S.R.B. and X.Y. synthesized and characterized the agents. S.R.B. and A.L. prepared the animal model. G.L., Y.L. and N.Y. performed the MRI studies. A.J., S.R.B. and G.L. performed the immunohistochemistry. G.L. and P.v.Z. analysed the data. G.L. and P.v.Z. co-wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Guanshu Liu or Peter van Zijl.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary methods, figures and references.

Life Sciences Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, G., Banerjee, S.R., Yang, X. et al. A dextran-based probe for the targeted magnetic resonance imaging of tumours expressing prostate-specific membrane antigen. Nat Biomed Eng 1, 977–982 (2017). https://doi.org/10.1038/s41551-017-0168-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41551-017-0168-8

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer