Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Surveillance nanotechnology for multi-organ cancer metastases

Abstract

The identification and molecular profiling of early metastases remains a major challenge in cancer diagnostics and therapy. Most in vivo imaging methods fail to detect small cancerous lesions, a problem that is compounded by the distinct physical and biological barriers associated with different metastatic niches. Here, we show that intravenously injected rare-earth-doped albumin-encapsulated nanoparticles emitting short-wave infrared light (SWIR) can detect targeted metastatic lesions in vivo, allowing for the longitudinal tracking of multi-organ metastases. In a murine model of human breast cancer, the nanoprobes enabled whole-body SWIR detection of adrenal-gland microlesions and bone lesions that were undetectable via contrast-enhanced magnetic resonance imaging as early as three and five weeks post-inoculation, respectively. Whole-body SWIR imaging of nanoprobes functionalized to differentially target distinct metastatic sites and administered to a biomimetic murine model of human breast cancer resolved multi-organ metastases that showed varied molecular profiles in the lungs, adrenal glands and bones. Real-time surveillance of lesions in multiple organs should facilitate pre- and post-therapy monitoring in preclinical settings.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Kennecke, H. et al. Metastatic behavior of breast cancer subtypes. J. Clin. Oncol.28, 3271–3277 (2010).

    PubMed  Google Scholar 

  2. 2.

    Chaffer, C. L. & Weinberg, R. A. A perspective on cancer cell metastasis. Science331, 1559–1564 (2011).

    CAS  Google Scholar 

  3. 3.

    Dawood, S., Broglio, K., Ensor, J., Hortobagyi, G. N. & Giordano, S. H. Survival differences among women with de novo stage IV and relapsed breast cancer. Ann. Oncol.21, 2169–2174 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Dawood, S. et al. Differences in survival among women with stage III inflammatory and noninflammatory locally advanced breast cancer appear early: a large population-based study. Cancer117, 1819–1826 (2011).

    PubMed  Google Scholar 

  5. 5.

    Manders, K. et al. Clinical management of women with metastatic breast cancer: a descriptive study according to age group. BMC Cancer6, 179 (2006).

    PubMed  PubMed Central  Google Scholar 

  6. 6.

    Plunkett, T. A., Smith, P. & Rubens, R. D. Risk of complications from bone metastases in breast cancer. Implications for management. Eur. J. Cancer36, 476–482 (2000).

    CAS  PubMed  Google Scholar 

  7. 7.

    Ganapathy, V. et al. Luminal breast cancer metastasis is dependent on estrogen signaling. Clin. Exp. Metastasis29, 493–509 (2012).

    CAS  PubMed  Google Scholar 

  8. 8.

    Ganapathy, V. et al. Targeting the transforming growth factor-β pathway inhibits human basal-like breast cancer metastasis. Mol. Cancer9, 122 (2010).

    PubMed  PubMed Central  Google Scholar 

  9. 9.

    Setyawati, M. I., Tay, C. Y., Docter, D., Stauber, R. H. & Leong, D. T. Understanding and exploiting nanoparticles’ intimacy with the blood vessel and blood. Chem. Soc. Rev.44, 8174–8199 (2015).

    CAS  PubMed  Google Scholar 

  10. 10.

    Cleaver, O. & Melton, D. A. Endothelial signaling during development. Nat. Med.9, 661–668 (2003).

    CAS  PubMed  Google Scholar 

  11. 11.

    Barua, S. & Mitragotri, S. Challenges associated with penetration of nanoparticles across cell and tissue barriers: a review of current status and future prospects. Nano Today9, 223–243 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Blanco, E., Shen, H. & Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol.33, 941–951 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Smith, A. M., Mancini, M. C. & Nie, S. Bioimaging: second window for in vivo imaging. Nat. Nanotech.4, 710–711 (2009).

    CAS  Google Scholar 

  14. 14.

    Sordillo, L. A., Pu, Y., Pratavieira, S., Budansky, Y. & Alfano, R. R. Deep optical imaging of tissue using the second and third near-infrared spectral windows. J. Biomed. Opt.19, 056004 (2014).

    PubMed  Google Scholar 

  15. 15.

    Naczynski, D. J. et al. Rare-earth-doped biological composites as in vivo shortwave infrared reporters. Nat. Commun.4, 2199 (2013).

    CAS  Google Scholar 

  16. 16.

    van Saders, B., Al-Baroudi, L., Tan, M. C. & Riman, R. E. Rare-earth doped particles with tunable infrared emissions for biomedical imaging. Opt. Mater. Express3, 566–573 (2013).

    Google Scholar 

  17. 17.

    Tan, M. C., Connolly, J. & Riman, R. E. Optical efficiency of short wave infrared emitting phosphors. J. Phys. Chem. C115, 17952–17957 (2011).

    CAS  Google Scholar 

  18. 18.

    Kang, Y. et al. A multigenic program mediating breast cancer metastasis to bone. Cancer Cell3, 537–549 (2003).

    CAS  PubMed  Google Scholar 

  19. 19.

    Zevon, M. et al. CXCR-4 targeted, short wave infrared (SWIR) emitting nanoprobes for enhanced deep tissue imaging and micrometastatic cancer lesion detection. Small11, 6347–6357 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Zhao, X., He, S. & Tan, M. C. Design of infrared-emitting rare earth doped nanoparticles and nanostructured composites. J. Mater. Chem. C4, 8349–8372 (2016).

    CAS  Google Scholar 

  21. 21.

    Sheng, Y., De Liao, L., Thakor, N. V. & Tan, M. C. Nanoparticles for molecular imaging. J. Biomed. Nanotechnol.10, 2641–2676 (2014).

    CAS  PubMed  Google Scholar 

  22. 22.

    Naczynski, D. J. et al. Albumin nanoshell encapsulation of near-infrared-excitable rare-earth nanoparticles enhances biocompatibility and enables targeted cell imaging. Small6, 1631–1640 (2010).

    CAS  PubMed  Google Scholar 

  23. 23.

    Hendrix, C. W. et al. Pharmacokinetics and safety of AMD-3100, a novel antagonist of the CXCR-4 chemokine receptor, in human volunteers. Antimicrob. Agents Ch.44, 1667–1673 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    De Clercq, E. The bicyclam AMD3100 story. Nat. Rev. Drug Discov.2, 581–587 (2003).

    PubMed  Google Scholar 

  25. 25.

    Baglioni, M. et al. Binding of the doxorubicin-lactosaminated human albumin conjugate to HCC cells is mediated by the drug moieties. Dig. Liver Dis.40, 963–964 (2008).

    CAS  PubMed  Google Scholar 

  26. 26.

    Kratz, F. Albumin as a drug carrier: design of prodrugs, drug conjugates and nanoparticles. J. Control Release132, 171–183 (2008).

    CAS  PubMed  Google Scholar 

  27. 27.

    Ulmert, D., Solnes, L. & Thorek, D. Contemporary approaches for imaging skeletal metastasis. Bone Res.3, 15024 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Minn, A. J. et al. Genes that mediate breast cancer metastasis to lung. Nature436, 518–524 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Minn, A. J. et al. Distinct organ-specific metastatic potential of individual breast cancer cells and primary tumors. J. Clin. Investig.115, 44–55 (2005).

    CAS  PubMed  Google Scholar 

  30. 30.

    Toy, R., Peiris, P. M., Ghaghada, K. B. & Karathanasis, E. Shaping cancer nanomedicine: the effect of particle shape on the in vivo journey of nanoparticles. Nanomedicine9, 121–134 (2014).

    CAS  PubMed  Google Scholar 

  31. 31.

    Berman, A. T., Thukral, A. D., Hwang, W. T., Solin, L. J. & Vapiwala, N. Incidence and patterns of distant metastases for patients with early-stage breast cancer after breast conservation treatment. Clin. Breast Cancer13, 88–94 (2013).

    PubMed  Google Scholar 

  32. 32.

    Sethi, N. & Kang, Y. Notch signalling in cancer progression and bone metastasis. Br. J. Cancer105, 1805–1810 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Hazan, R. B., Phillips, G. R., Qiao, R. F., Norton, L. & Aaronson, S. A. Exogenous expression of N-cadherin in breast cancer cells induces cell migration, invasion, and metastasis. J. Cell Biol.148, 779–790 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Gligorijevic, B. et al. Intravital imaging and photoswitching in tumor invasion and intravasation microenvironments. Micros Today18, 34–37 (2010).

    PubMed  PubMed Central  Google Scholar 

  35. 35.

    Hulit, J. et al. The use of fluorescent proteins for intravital imaging of cancer cell invasion. Methods Mol. Biol.872, 15–30 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Kedrin, D. et al. Intravital imaging of metastatic behavior through a mammary imaging window. Nat. Methods5, 1019–1021 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Fein, M. R. & Egeblad, M. Caught in the act: revealing the metastatic process by live imaging. Dis. Model. Mech.6, 580–593 (2013).

    PubMed  PubMed Central  Google Scholar 

  38. 38.

    Lunov, O. et al. Differential uptake of functionalized polystyrene nanoparticles by human macrophages and a monocytic cell line. ACS Nano5, 1657–1669 (2011).

    CAS  PubMed  Google Scholar 

  39. 39.

    Suva, L. J., Griffin, R. J. & Makhoul, I. Mechanisms of bone metastases of breast cancer. Endocr. Relat. Cancer16, 703–713 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Murugan, K. et al. Parameters and characteristics governing cellular internalization and trans-barrier trafficking of nanostructures. Int. J. Nanomed.10, 2191–2206 (2015).

    CAS  Google Scholar 

  41. 41.

    Bertrand, N., Wu, J., Xu, X., Kamaly, N. & Farokhzad, O. C. Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv. Drug Deliv. Rev.66, 2–25 (2014).

    CAS  PubMed  Google Scholar 

  42. 42.

    Kettiger, H., Schipanski, A., Wick, P. & Huwyler, J. Engineered nanomaterial uptake and tissue distribution: from cell to organism. Int. J. Nanomed.8, 3255–3269 (2013).

    Google Scholar 

  43. 43.

    Kang, Y. & Pantel, K. Tumor cell dissemination: emerging biological insights from animal models and cancer patients. Cancer Cell23, 573–581 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful for access to the Rutgers Molecular Imaging Core (D. Adler), Analytical Core at the Environmental and Occupational Health Sciences Institute, Rutgers University (B. Buckley and E. McCandish), and for funding from the National Institutes of Health National Institute of Biomedical Imaging and Bioengineering (EB018378-01 and EB015169-02), Singapore University of Technology and Design-Massachusetts Institute of Technology International Design Centre (project number IDG31400106), and the Singapore Ministry of Education (project number MOE2014-T2-2-145). We also thank Y. Kang of Princeton University for the SCP28, SCP2 and 4175-TR cells. We acknowledge Malvern Instruments for providing the equipment used for the DLS measurements.

Author information

Affiliations

Authors

Contributions

H.K., M.Z., V.G., S.G., C.M.R. and P.V.M. conceived the study and designed the experiments. H.K., V.G., M.Z., W.B-P., M.J.D. and S.R.B performed the animal experiments. H.K., M.Z. and M.J.D. performed in vitro experiments. M-C.T., X.Z., Y.S. and R.E.R. designed and fabricated the rare-earth nanoparticles. H.K., M.Z., L.H.M., L.M.H., V.G. and M.C.P. analysed the data. H.K., M.Z., M-C.T., C.M.R., M.C.P., V.G. and P.V.M. wrote the manuscript.

Corresponding authors

Correspondence to Mark C. Pierce or Vidya Ganapathy or Prabhas V. Moghe.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary figures and video captions.

Life Sciences Reporting Summary.

Supplementary Video 1

Real-time short-wave-infrared-light imaging of athymic nude mice in supine position intravenously injected with 200 μl of rare-earth albumin nanocomposites.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kantamneni, H., Zevon, M., Donzanti, M.J. et al. Surveillance nanotechnology for multi-organ cancer metastases. Nat Biomed Eng 1, 993–1003 (2017). https://doi.org/10.1038/s41551-017-0167-9

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing