Article | Published:

Sustained miRNA delivery from an injectable hydrogel promotes cardiomyocyte proliferation and functional regeneration after ischaemic injury

Nature Biomedical Engineeringvolume 1pages983992 (2017) | Download Citation

Abstract

MicroRNA-based therapies that target cardiomyocyte proliferation have great potential for the treatment of myocardial infarction. In previous work, we showed that the miR-302/367 cluster regulates cardiomyocyte proliferation in the prenatal and postnatal heart. Here, we describe the development and application of an injectable hyaluronic acid hydrogel for the local and sustained delivery of miR-302 mimics to the heart. We show that the miR-302 mimics released in vitro promoted cardiomyocyte proliferation over one week, and that a single injection of the hydrogel in the mouse heart led to local and sustained cardiomyocyte proliferation for two weeks. After myocardial infarction, gel–miR-302 injection caused local clonal proliferation and increased cardiomyocyte numbers in the border zone of a Confetti mouse model. Gel–miR-302 further decreased cardiac end-diastolic (39%) and end-systolic (50%) volumes, and improved ejection fraction (32%) and fractional shortening (64%) four weeks after myocardial infarction and injection, compared with controls. Our findings suggest that biomaterial-based miRNA delivery systems can lead to improved outcomes via cardiac regeneration after myocardial infarction.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Townsend, N. et al. Cardiovascular disease in Europe: epidemiological update 2016. Eur. Heart J. 37, 3232–3245 (2016).

  2. 2.

    Mozaffarian, D. et al. Heart disease and stroke statistics—2015 update: a report from the American Heart Association. Circulation 131, e29–322 (2014).

  3. 3.

    Pasumarthi, K. B. S. Cardiomyocyte cell cycle regulation. Circ. Res. 90, 1044–1054 (2002).

  4. 4.

    Jameel, M. N. & Zhang, J. Stem cell therapy for ischaemic heart disease. Antioxid. Redox Signal. 13, 1879–1897 (2010).

  5. 5.

    Leone, M., Magadum, A. & Engel, F. B. Cardiomyocyte proliferation in cardiac development and regeneration: a guide to methodologies and interpretations. Am. J. Physiol. Heart Circ. Physiol. 309, H1237–H1250 (2015).

  6. 6.

    Laflamme, M. A. & Murry, C. E. Heart regeneration. Nature 473, 326–335 (2011).

  7. 7.

    Li, Y. et al. Acute myocardial infarction induced functional cardiomyocytes to re-enter the cell cycle. Am. J. Transl. Res. 5, 327–335 (2013).

  8. 8.

    Orlic, D. et al. Bone marrow cells regenerate infarcted myocardium. Nature 410, 701–705 (2001).

  9. 9.

    Elnakish, M. T. et al. Mesenchymal stem cells for cardiac regeneration: translation to bedside reality. Stem Cells Int. 2012, 1–14 (2012).

  10. 10.

    Gavira, J. J. et al. Autologous skeletal myoblast transplantation in patients with nonacute myocardial infarction: 1-year follow-up. J. Thorac. Cardiovasc. Surg. 131, 799–804 (2006).

  11. 11.

    Hodgson, D. M. et al. Stable benefit of embryonic stem cell therapy in myocardial infarction. Am. J. Physiol. Heart Circ. Physiol. 287, H471–H479 (2004).

  12. 12.

    Lalit, P. A., Hei, D. J., Raval, A. N. & Kamp, T. J. Induced pluripotent stem cells for post-myocardial infarction repair: remarkable opportunities and challenges. Circ. Res. 114, 1328–1345 (2014).

  13. 13.

    Korf-Klingebiel, M. et al. Myeloid-derived growth factor (C19orf10) mediates cardiac repair following myocardial infarction. Nat. Med. 21, 140–149 (2015).

  14. 14.

    Ni, T. T. et al. Discovering small molecules that promote cardiomyocyte generation by modulating Wnt signaling. Chem. Biol. 18, 1658–68 (2011).

  15. 15.

    Cheng, Y.-Y. et al. Reprogramming-derived gene cocktail increases cardiomyocyte proliferation for heart regeneration. EMBO Mol. Med. 9, 251–264 (2017).

  16. 16.

    Liang, D. et al. miRNA-204 drives cardiomyocyte proliferation via targeting Jarid2. Int. J. Cardiol. 201, 38–48 (2015).

  17. 17.

    Eulalio, A. et al. Functional screening identifies miRNAs inducing cardiac regeneration. Nature 492, 376–381 (2012).

  18. 18.

    Tian, Y. et al. A microRNA-Hippo pathway that promotes cardiomyocyte proliferation and cardiac regeneration in mice. Sci. Transl. Med. 7, 279ra38 (2015).

  19. 19.

    Panda, N. C. et al. Improved conduction and increased cell retention in healed MI using mesenchymal stem cells suspended in alginate hydrogel. J. Interv. Card. Electrophysiol. 41, 117–127 (2014).

  20. 20.

    Teng, C. J., Luo, J., Chiu, R. C. J. & Shum-Tim, D. Massive mechanical loss of microspheres with direct intramyocardial injection in the beating heart: implications for cellular cardiomyoplasty. J. Thorac. Cardiovasc. Surg. 132, 628–632 (2006).

  21. 21.

    Tous, E., Purcell, B., Ifkovits, J. L. & Burdick, J. A. Injectable acellular hydrogels for cardiac repair. J. Cardiovasc. Transl. Res. 4, 528–542 (2011).

  22. 22.

    Gaffey, A. C. et al. Injectable shear-thinning hydrogels used to deliver endothelial progenitor cells, enhance cell engraftment, and improve ischaemic myocardium. J. Thorac. Cardiovasc. Surg. 150, 1268–1277 (2015).

  23. 23.

    Rodell, C. B. et al. Shear-thinning supramolecular hydrogels with secondary autonomous covalent crosslinking to modulate viscoelastic properties in vivo. Adv. Funct. Mater. 25, 636–644 (2014).

  24. 24.

    Rodell, C. B., Kaminski, A. L. & Burdick, J. A. Rational design of network properties in guest–host assembled and shear-thinning hyaluronic acid hydrogels. Biomacromolecules 14, 4125–4134 (2013).

  25. 25.

    Rodell, C. B. et al. Injectable shear-thinning hydrogels for minimally invasive delivery to infarcted myocardium to limit left ventricular remodeling. Circ. Cardiovasc. Interv. 9, e004058 (2016).

  26. 26.

    Wang, L. L. et al. Injectable, guest–host assembled polyethylenimine hydrogel for siRNA delivery. Biomacromolecules 18, 77–86 (2016).

  27. 27.

    Seif-Naraghi, S. B. et al. Safety and efficacy of an injectable extracellular matrix hydrogel for treating myocardial infarction. Sci. Transl. Med. 5, 173ra25 (2013).

  28. 28.

    Guvendiren, M., Lu, H. D. & Burdick, J. A. Shear-thinning hydrogels for biomedical applications. Soft Matter 8, 260–272 (2012).

  29. 29.

    Mealy, J. E., Rodell, C. B. & Burdick, J. A. Sustained small molecule delivery from injectable hyaluronic acid hydrogels through host–guest mediated retention. J. Mater. Chem. B 3, 8010–8019 (2015).

  30. 30.

    Liu, Y. M. et al. Cholesterol-conjugated let-7a mimics: antitumor efficacy on hepatocellular carcinoma in vitro and in a preclinical orthotopic xenograft model of systemic therapy. BMC Cancer 14, 889 (2014).

  31. 31.

    Shim, M. S. & Kwon, Y. J. Efficient and targeted delivery of siRNA in vivo. FEBS J. 277, 4814–27 (2010).

  32. 32.

    Wolfrum, C. et al. Mechanisms and optimization of in vivo delivery of lipophilic siRNAs. Nat. Biotechnol. 25, 1149–1157 (2007).

  33. 33.

    Wang, L. L. & Burdick, J. A. Engineered hydrogels for local and sustained delivery of RNA-interference therapies. Adv. Healthc. Mater. 6, 1601041 (2016).

  34. 34.

    van de Manakker, F., van der Pot, M., Vermonden, T., van Nostrum, C. F. & Hennink, W. E. Self-assembling hydrogels based on β-cyclodextrin/cholesterol inclusion complexes. Macromolecules 41, 1766–1773 (2008).

  35. 35.

    López, C. A. et al. Molecular mechanism of cyclodextrin mediated cholesterol extraction. PLoS Comput. Biol. 7, e1002020 (2011).

  36. 36.

    Politzer, I. R. et al. Effect of β-cyclodextrin on the fluorescence, absorption and lasing of rhodamine 6G, rhodamine B and fluorescein disodium salt in aqueous solutions. Chem. Phys. Lett. 159, 258–262 (1989).

  37. 37.

    Mondal, A. & Jana, N. R. Fluorescent detection of cholesterol using β-cyclodextrin functionalized graphene. Chem. Commun. 48, 7316 (2012).

  38. 38.

    López, C. A., de Vries, A. H. & Marrink, S. J. Molecular mechanism of cyclodextrin mediated cholesterol extraction. PLoS Comput. Biol. 7, e1002020 (2011).

  39. 39.

    Senyo, S. E. et al. Mammalian heart renewal by pre-existing cardiomyocytes. Nature 493, 433–436 (2012).

  40. 40.

    Ali, S. R. et al. Existing cardiomyocytes generate cardiomyocytes at a low rate after birth in mice. Proc. Natl Acad. Sci. USA 111, 8850–8855 (2014).

  41. 41.

    Snippert, H. J. et al. Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. Cell 143, 134–144 (2010).

  42. 42.

    Lescroart, F. et al. Early lineage restriction in temporally distinct populations of Mesp1 progenitors during mammalian heart development. Nat. Cell Biol. 16, 829–840 (2014).

  43. 43.

    Rios, A. C., Fu, N. Y., Lindeman, G. J. & Visvader, J. E. In situ identification of bipotent stem cells in the mammary gland. Nature 506, 322–327 (2014).

  44. 44.

    Sohal, D. S. et al. Temporally regulated and tissue-specific gene manipulations in the adult and embryonic heart using a tamoxifen-inducible Cre protein. Circ. Res. 89, 20–25 (2001).

  45. 45.

    Frank, D. B. et al. Emergence of a wave of Wnt signaling that regulates lung alveologenesis by controlling epithelial self-renewal and differentiation. Cell Rep. 17, 2312–2325 (2016).

  46. 46.

    Farin, H. F. et al. Visualization of a short-range Wnt gradient in the intestinal stem-cell niche. Nature 530, 340–343 (2016).

  47. 47.

    Farin, H. F., Van Es, J. H. & Clevers, H. Redundant sources of Wnt regulate intestinal stem cells and promote formation of Paneth cells. Gastroenterology 143, 1518–1529.e7 (2012).

  48. 48.

    Burdick, J. A. & Prestwich, G. D. Hyaluronic acid hydrogels for biomedical applications. Adv. Mater. 23, H41–H56 (2011).

  49. 49.

    Tian, Y. & Morrisey, E. E. Importance of myocyte-nonmyocyte interactions in cardiac development and disease. Circ. Res. 110, 1023–1034 (2012).

  50. 50.

    Yang, Y. et al. MicroRNA-34a plays a key role in cardiac repair and regeneration following myocardial infarction. Circ. Res. 117, 450–459 (2015).

  51. 51.

    Lesizza, P. et al. Single-dose intracardiac injection of pro-regenerative microRNAs improves cardiac function after myocardial infarction. Circ. Res. 120, 1298–1304 (2017).

  52. 52.

    Monaghan, M. G. et al. Exogenous miR-29B delivery through a hyaluronan-based injectable system yields functional maintenance of the infarcted myocardium. Tissue Eng. Part A  https://doi.org/10.1089/ten.TEA.2016.0527 (2017).

  53. 53.

    Pandey, R. et al. MicroRNA-1825 induces proliferation of adult cardiomyocytes and promotes cardiac regeneration post ischaemic injury. Am. J. Transl. Res. 9, 3120–3137 (2017).

  54. 54.

    Patel, R. S. et al. High resolution of microRNA signatures in human whole saliva. Arch. Oral Biol. 56, 1506–1513 (2011).

  55. 55.

    Shcherbakova, D. M. & Verkhusha, V. V. Near-infrared fluorescent proteins for multicolor in vivo imaging. Nat. Methods 10, 751–754 (2013).

Download references

Acknowledgements

The authors thank C. Loebel for assistance with manuscript revisions, C. Chen, C. Venkataraman, A. Trubelja, S. Zaman, J. Gordon and F. Arisi for assistance with mouse surgeries and histology, J. Galarraga and C. Rodell for material contribution and helpful discussion, S. Schultz of the Penn Small Animal Imaging Facility for assistance with echocardiography, and the Penn Histology and Gene Expression Core. This work was made possible by financial support from the American Heart Association through an established investigator award (J.A.B.) and predoctoral fellowship (L.L.W.), and the National Institutes of Health (F30 HL134255, UO1 HL100405, U01 HL134745).

Author information

Author notes

  1. Leo L. Wang and Ying Liu contributed equally to this work.

Affiliations

  1. Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA

    • Leo L. Wang
    •  & Jason A. Burdick
  2. Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA

    • Ying Liu
    • , Tao Wang
    • , Minmin Lu
    • , Christina A. Cavanaugh
    • , Su Zhou
    •  & Edward E. Morrisey
  3. Division of Cardiovascular Surgery, Department of Surgery, University of Pennsylvania, Philadelphia, PA, USA

    • Jennifer J. Chung
    • , Ann C. Gaffey
    • , Rahul Kanade
    •  & Pavan Atluri

Authors

  1. Search for Leo L. Wang in:

  2. Search for Ying Liu in:

  3. Search for Jennifer J. Chung in:

  4. Search for Tao Wang in:

  5. Search for Ann C. Gaffey in:

  6. Search for Minmin Lu in:

  7. Search for Christina A. Cavanaugh in:

  8. Search for Su Zhou in:

  9. Search for Rahul Kanade in:

  10. Search for Pavan Atluri in:

  11. Search for Edward E. Morrisey in:

  12. Search for Jason A. Burdick in:

Contributions

L.L.W. and Y.L. contributed equally to this work. L.L.W., Y.L., E.E.M. and J.A.B. conceived the ideas and designed the experiments. L.L.W., Y.L., J.J.C., T.W., A.C.G., M.L., C.A.C., S.Z. and R.K. conducted the experiments and analysed the data. L.L.W., Y.L., P.A., E.E.M. and J.A.B. interpreted the data and wrote the manuscript. All authors have given approval to the final version of the manuscript.

Competing interests

Provisional patents concerning the technology described in this work have been filed.

Corresponding authors

Correspondence to Edward E. Morrisey or Jason A. Burdick.

Electronic supplementary material

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41551-017-0157-y