Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Sustained miRNA delivery from an injectable hydrogel promotes cardiomyocyte proliferation and functional regeneration after ischaemic injury

Abstract

MicroRNA-based therapies that target cardiomyocyte proliferation have great potential for the treatment of myocardial infarction. In previous work, we showed that the miR-302/367 cluster regulates cardiomyocyte proliferation in the prenatal and postnatal heart. Here, we describe the development and application of an injectable hyaluronic acid hydrogel for the local and sustained delivery of miR-302 mimics to the heart. We show that the miR-302 mimics released in vitro promoted cardiomyocyte proliferation over one week, and that a single injection of the hydrogel in the mouse heart led to local and sustained cardiomyocyte proliferation for two weeks. After myocardial infarction, gel–miR-302 injection caused local clonal proliferation and increased cardiomyocyte numbers in the border zone of a Confetti mouse model. Gel–miR-302 further decreased cardiac end-diastolic (39%) and end-systolic (50%) volumes, and improved ejection fraction (32%) and fractional shortening (64%) four weeks after myocardial infarction and injection, compared with controls. Our findings suggest that biomaterial-based miRNA delivery systems can lead to improved outcomes via cardiac regeneration after myocardial infarction.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Townsend, N. et al. Cardiovascular disease in Europe: epidemiological update 2016. Eur. Heart J.37, 3232–3245 (2016).

    Article  PubMed  Google Scholar 

  2. Mozaffarian, D. et al. Heart disease and stroke statistics—2015 update: a report from the American Heart Association. Circulation131, e29–322 (2014).

    PubMed  Google Scholar 

  3. Pasumarthi, K. B. S. Cardiomyocyte cell cycle regulation. Circ. Res.90, 1044–1054 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Jameel, M. N. & Zhang, J. Stem cell therapy for ischaemic heart disease. Antioxid. Redox Signal.13, 1879–1897 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Leone, M., Magadum, A. & Engel, F. B. Cardiomyocyte proliferation in cardiac development and regeneration: a guide to methodologies and interpretations. Am. J. Physiol. Heart Circ. Physiol.309, H1237–H1250 (2015).

    Article  CAS  PubMed  Google Scholar 

  6. Laflamme, M. A. & Murry, C. E. Heart regeneration. Nature473, 326–335 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Li, Y. et al. Acute myocardial infarction induced functional cardiomyocytes to re-enter the cell cycle. Am. J. Transl. Res.5, 327–335 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Orlic, D. et al. Bone marrow cells regenerate infarcted myocardium. Nature410, 701–705 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Elnakish, M. T. et al. Mesenchymal stem cells for cardiac regeneration: translation to bedside reality. Stem Cells Int.2012, 1–14 (2012).

    Article  CAS  Google Scholar 

  10. Gavira, J. J. et al. Autologous skeletal myoblast transplantation in patients with nonacute myocardial infarction: 1-year follow-up. J. Thorac. Cardiovasc. Surg.131, 799–804 (2006).

    Article  PubMed  Google Scholar 

  11. Hodgson, D. M. et al. Stable benefit of embryonic stem cell therapy in myocardial infarction. Am. J. Physiol. Heart Circ. Physiol.287, H471–H479 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Lalit, P. A., Hei, D. J., Raval, A. N. & Kamp, T. J. Induced pluripotent stem cells for post-myocardial infarction repair: remarkable opportunities and challenges. Circ. Res.114, 1328–1345 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Korf-Klingebiel, M. et al. Myeloid-derived growth factor (C19orf10) mediates cardiac repair following myocardial infarction. Nat. Med.21, 140–149 (2015).

    Article  CAS  PubMed  Google Scholar 

  14. Ni, T. T. et al. Discovering small molecules that promote cardiomyocyte generation by modulating Wnt signaling. Chem. Biol.18, 1658–68 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cheng, Y.-Y. et al. Reprogramming-derived gene cocktail increases cardiomyocyte proliferation for heart regeneration. EMBO Mol. Med.9, 251–264 (2017).

    Article  CAS  PubMed  Google Scholar 

  16. Liang, D. et al. miRNA-204 drives cardiomyocyte proliferation via targeting Jarid2. Int. J. Cardiol.201, 38–48 (2015).

    Article  PubMed  Google Scholar 

  17. Eulalio, A. et al. Functional screening identifies miRNAs inducing cardiac regeneration. Nature492, 376–381 (2012).

    Article  CAS  PubMed  Google Scholar 

  18. Tian, Y. et al. A microRNA-Hippo pathway that promotes cardiomyocyte proliferation and cardiac regeneration in mice. Sci. Transl. Med.7, 279ra38 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Panda, N. C. et al. Improved conduction and increased cell retention in healed MI using mesenchymal stem cells suspended in alginate hydrogel. J. Interv. Card. Electrophysiol.41, 117–127 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Teng, C. J., Luo, J., Chiu, R. C. J. & Shum-Tim, D. Massive mechanical loss of microspheres with direct intramyocardial injection in the beating heart: implications for cellular cardiomyoplasty. J. Thorac. Cardiovasc. Surg.132, 628–632 (2006).

    Article  PubMed  Google Scholar 

  21. Tous, E., Purcell, B., Ifkovits, J. L. & Burdick, J. A. Injectable acellular hydrogels for cardiac repair. J. Cardiovasc. Transl. Res.4, 528–542 (2011).

    Article  PubMed  Google Scholar 

  22. Gaffey, A. C. et al. Injectable shear-thinning hydrogels used to deliver endothelial progenitor cells, enhance cell engraftment, and improve ischaemic myocardium. J. Thorac. Cardiovasc. Surg.150, 1268–1277 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Rodell, C. B. et al. Shear-thinning supramolecular hydrogels with secondary autonomous covalent crosslinking to modulate viscoelastic properties in vivo. Adv. Funct. Mater.25, 636–644 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Rodell, C. B., Kaminski, A. L. & Burdick, J. A. Rational design of network properties in guest–host assembled and shear-thinning hyaluronic acid hydrogels. Biomacromolecules14, 4125–4134 (2013).

    Article  CAS  PubMed  Google Scholar 

  25. Rodell, C. B. et al. Injectable shear-thinning hydrogels for minimally invasive delivery to infarcted myocardium to limit left ventricular remodeling. Circ. Cardiovasc. Interv.9, e004058 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang, L. L. et al. Injectable, guest–host assembled polyethylenimine hydrogel for siRNA delivery. Biomacromolecules18, 77–86 (2016).

    Article  PubMed  CAS  Google Scholar 

  27. Seif-Naraghi, S. B. et al. Safety and efficacy of an injectable extracellular matrix hydrogel for treating myocardial infarction. Sci. Transl. Med.5, 173ra25 (2013).

    Article  PubMed  CAS  Google Scholar 

  28. Guvendiren, M., Lu, H. D. & Burdick, J. A. Shear-thinning hydrogels for biomedical applications. Soft Matter8, 260–272 (2012).

    Article  CAS  Google Scholar 

  29. Mealy, J. E., Rodell, C. B. & Burdick, J. A. Sustained small molecule delivery from injectable hyaluronic acid hydrogels through host–guest mediated retention. J. Mater. Chem. B3, 8010–8019 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Liu, Y. M. et al. Cholesterol-conjugated let-7a mimics: antitumor efficacy on hepatocellular carcinoma in vitro and in a preclinical orthotopic xenograft model of systemic therapy. BMC Cancer14, 889 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Shim, M. S. & Kwon, Y. J. Efficient and targeted delivery of siRNA in vivo. FEBS J.277, 4814–27 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Wolfrum, C. et al. Mechanisms and optimization of in vivo delivery of lipophilic siRNAs. Nat. Biotechnol.25, 1149–1157 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Wang, L. L. & Burdick, J. A. Engineered hydrogels for local and sustained delivery of RNA-interference therapies. Adv. Healthc. Mater.6, 1601041 (2016).

    Article  CAS  Google Scholar 

  34. van de Manakker, F., van der Pot, M., Vermonden, T., van Nostrum, C. F. & Hennink, W. E. Self-assembling hydrogels based on β-cyclodextrin/cholesterol inclusion complexes. Macromolecules41, 1766–1773 (2008).

    Article  CAS  Google Scholar 

  35. López, C. A. et al. Molecular mechanism of cyclodextrin mediated cholesterol extraction. PLoS Comput. Biol.7, e1002020 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Politzer, I. R. et al. Effect of β-cyclodextrin on the fluorescence, absorption and lasing of rhodamine 6G, rhodamine B and fluorescein disodium salt in aqueous solutions. Chem. Phys. Lett.159, 258–262 (1989).

    Article  CAS  Google Scholar 

  37. Mondal, A. & Jana, N. R. Fluorescent detection of cholesterol using β-cyclodextrin functionalized graphene. Chem. Commun.48, 7316 (2012).

    Article  CAS  Google Scholar 

  38. López, C. A., de Vries, A. H. & Marrink, S. J. Molecular mechanism of cyclodextrin mediated cholesterol extraction. PLoS Comput. Biol.7, e1002020 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Senyo, S. E. et al. Mammalian heart renewal by pre-existing cardiomyocytes. Nature493, 433–436 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Ali, S. R. et al. Existing cardiomyocytes generate cardiomyocytes at a low rate after birth in mice. Proc. Natl Acad. Sci. USA111, 8850–8855 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Snippert, H. J. et al. Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. Cell143, 134–144 (2010).

    Article  CAS  PubMed  Google Scholar 

  42. Lescroart, F. et al. Early lineage restriction in temporally distinct populations of Mesp1 progenitors during mammalian heart development. Nat. Cell Biol.16, 829–840 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rios, A. C., Fu, N. Y., Lindeman, G. J. & Visvader, J. E. In situ identification of bipotent stem cells in the mammary gland. Nature506, 322–327 (2014).

    Article  CAS  PubMed  Google Scholar 

  44. Sohal, D. S. et al. Temporally regulated and tissue-specific gene manipulations in the adult and embryonic heart using a tamoxifen-inducible Cre protein. Circ. Res.89, 20–25 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Frank, D. B. et al. Emergence of a wave of Wnt signaling that regulates lung alveologenesis by controlling epithelial self-renewal and differentiation. Cell Rep.17, 2312–2325 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Farin, H. F. et al. Visualization of a short-range Wnt gradient in the intestinal stem-cell niche. Nature530, 340–343 (2016).

    Article  CAS  PubMed  Google Scholar 

  47. Farin, H. F., Van Es, J. H. & Clevers, H. Redundant sources of Wnt regulate intestinal stem cells and promote formation of Paneth cells. Gastroenterology143, 1518–1529.e7 (2012).

    Article  CAS  PubMed  Google Scholar 

  48. Burdick, J. A. & Prestwich, G. D. Hyaluronic acid hydrogels for biomedical applications. Adv. Mater.23, H41–H56 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tian, Y. & Morrisey, E. E. Importance of myocyte-nonmyocyte interactions in cardiac development and disease. Circ. Res.110, 1023–1034 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yang, Y. et al. MicroRNA-34a plays a key role in cardiac repair and regeneration following myocardial infarction. Circ. Res.117, 450–459 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lesizza, P. et al. Single-dose intracardiac injection of pro-regenerative microRNAs improves cardiac function after myocardial infarction. Circ. Res.120, 1298–1304 (2017).

    Article  CAS  PubMed  Google Scholar 

  52. Monaghan, M. G. et al. Exogenous miR-29B delivery through a hyaluronan-based injectable system yields functional maintenance of the infarcted myocardium. Tissue Eng. Part A  https://doi.org/10.1089/ten.TEA.2016.0527 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Pandey, R. et al. MicroRNA-1825 induces proliferation of adult cardiomyocytes and promotes cardiac regeneration post ischaemic injury. Am. J. Transl. Res.9, 3120–3137 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Patel, R. S. et al. High resolution of microRNA signatures in human whole saliva. Arch. Oral Biol.56, 1506–1513 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Shcherbakova, D. M. & Verkhusha, V. V. Near-infrared fluorescent proteins for multicolor in vivo imaging. Nat. Methods10, 751–754 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank C. Loebel for assistance with manuscript revisions, C. Chen, C. Venkataraman, A. Trubelja, S. Zaman, J. Gordon and F. Arisi for assistance with mouse surgeries and histology, J. Galarraga and C. Rodell for material contribution and helpful discussion, S. Schultz of the Penn Small Animal Imaging Facility for assistance with echocardiography, and the Penn Histology and Gene Expression Core. This work was made possible by financial support from the American Heart Association through an established investigator award (J.A.B.) and predoctoral fellowship (L.L.W.), and the National Institutes of Health (F30 HL134255, UO1 HL100405, U01 HL134745).

Author information

Authors and Affiliations

Authors

Contributions

L.L.W. and Y.L. contributed equally to this work. L.L.W., Y.L., E.E.M. and J.A.B. conceived the ideas and designed the experiments. L.L.W., Y.L., J.J.C., T.W., A.C.G., M.L., C.A.C., S.Z. and R.K. conducted the experiments and analysed the data. L.L.W., Y.L., P.A., E.E.M. and J.A.B. interpreted the data and wrote the manuscript. All authors have given approval to the final version of the manuscript.

Corresponding authors

Correspondence to Edward E. Morrisey or Jason A. Burdick.

Ethics declarations

Competing interests

Provisional patents concerning the technology described in this work have been filed.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L.L., Liu, Y., Chung, J.J. et al. Sustained miRNA delivery from an injectable hydrogel promotes cardiomyocyte proliferation and functional regeneration after ischaemic injury. Nat Biomed Eng 1, 983–992 (2017). https://doi.org/10.1038/s41551-017-0157-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41551-017-0157-y

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research