Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Non-destructive two-photon excited fluorescence imaging identifies early nodules in calcific aortic-valve disease

Abstract

Calcifications occur during the development of healthy bone and at the onset of calcific aortic-valve disease (CAVD) and many other pathologies. Although the mechanisms regulating early calcium deposition are not fully understood, they may provide targets for new treatments and early interventions. Here, we show that two-photon excited fluorescence (TPEF) can provide quantitative and sensitive readouts of calcific nodule formation, in particular in the context of CAVD. Specifically, by means of the decomposition of TPEF spectral images from excised human CAVD valves and rat bone before and after demineralization, as well as from calcific nodules formed within engineered gels, we identified an endogenous fluorophore that correlates with the level of mineralization in the samples. We then developed a ratiometric imaging approach that provides a quantitative readout of the presence of mineral deposits in early calcifications. TPEF should enable non-destructive, high-resolution imaging of three-dimensional tissue specimens for the assessment of the presence of calcification.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Visual analysis of TPEF images compared with Alizarin Red staining of a human CAVD nodule, a rat bone and a PAAM-gel-grown nodule.
Fig. 2: Representative images of human CAVD nodules, rat bone samples and PAAM gel nodules taken using SEM and TPEF.
Fig. 3: Effect of EDTA treatment on endogenous TPEF.
Fig. 4: Analysis of TPEF emission spectra reveals the emission spectrum of MAF.
Fig. 5: MAF images enable enhanced visualization of mineralized sample regions.
Fig. 6: MAF signal overlaps with CARS images.
Fig. 7: An ApoE–/– mouse model confirms the use of MAF as a quantifiable metric for calcification.
Fig. 8: Time-lapse experiment of calcification on PAAM gels shows measured change in nodule size.

Similar content being viewed by others

Zixuan Zhao, Xinyi Chen, … Hanry Yu

References

  1. Mohler, E. R. et al. Bone formation and inflammation in cardiac valves. Circulation 103, 1522–1528 (2001).

    Article  PubMed  Google Scholar 

  2. Nkomo, V. T. et al. Burden of valvular heart diseases: a population-based study. Lancet 368, 1005–1011 (2006).

    Article  PubMed  Google Scholar 

  3. Freeman, R. V. & Otto, C. M. Spectrum of calcific aortic valve disease: pathogenesis, disease progression, and treatment strategies. Circulation 111, 3316–3326 (2005).

    Article  PubMed  Google Scholar 

  4. Rajamannan, N. M. et al. Calcific aortic valve disease: not simply a degenerative process: a review and agenda for research from the National Heart and Lung and Blood Institute Aortic Stenosis Working Group. Executive summary: Calcific aortic valve disease-2011 update. Circulation 124, 1783–1791 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Sider, K. L., Blaser, M. C. & Simmons, C. A. Animal models of calcific aortic valve disease. Int. J. Inflam. 2011, 364310 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Wexler, L. et al. Coronary artery calcification: pathophysiology, epidemiology, imaging methods, and clinical implications: a statement for health professionals from the American Heart Association. Circulation 94, 1175–1192 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Linefsky, J. & Otto, C. in Cardiovascular Imaging (ed. Aikawa, E.) 225–249 (Springer, Cham, 2015).

  8. Fuster, V. et al. Atherothrombosis and high-risk plaque: part II: approaches by noninvasive computed tomographic/magnetic resonance imaging. J. Am. Coll. Cardiol. 46, 1209–1218 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. New, S. E. P. & Aikawa, E. Molecular imaging insights into early inflammatory stages of arterial and aortic valve calcification. Circ. Res. 108, 1381–1391 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Konig, K., Schenke-Layland, K., Riemann, I. & Stock, U. A. Multiphoton autofluorescence imaging of intratissue elastic fibers. Biomaterials 26, 495–500 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Alavi, S. H., Ruiz, V., Krasieva, T., Botvinick, E. L. & Kheradvar, A. Characterizing the collagen fiber orientation in pericardial leaflets under mechanical loading conditions. Ann. Biomed. Eng. 41, 547–561 (2013).

    Article  PubMed  Google Scholar 

  12. Gerson, C. J., Goldstein, S. & Heacox, A. E. Retained structural integrity of collagen and elastin within cryopreserved human heart valve tissue as detected by two-photon laser scanning confocal microscopy. Cryobiology 59, 171–179 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Dweck, M. et al. 18F-sodium fluoride is a marker of active calcification and disease progression in patients with aortic stenosis. Circ. Cardiovasc. Imaging 7, 371–378 (2014).

    Article  PubMed  Google Scholar 

  14. Dweck, M. R. et al. Assessment of valvular calcification and inflammation by positron emission tomography in patients with aortic stenosis. Circulation 125, 76–86 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Jenkins, W. S. et al. Valvular 18F-fluoride and 18F-fluorodeoxyglucose uptake predict disease progression and clinical outcome in patients with aortic stenosis. J. Am. Coll. Cardiol. 66, 1200–1201 (2015).

    Article  PubMed  Google Scholar 

  16. Vesey, A., Dweck, M. & Newby, D. in Cardiovascular Imaging (ed. Aikawa, E.) 201–223 (Springer, Cham, 2015).

  17. Ballyns, J. J. & Bonassar, L. J. Image‐guided tissue engineering. J. Cell. Mol. Med. 13, 1428–1436 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Feuchtner, G. Imaging of cardiac valves by computed tomography. Scientifica 2013, 270579 (2013).

    PubMed Central  Google Scholar 

  19. Goo, H. W. CT radiation dose optimization and estimation: an update for radiologists. Korean J. Radiol. 13, 1–11 (2012).

    Article  PubMed  Google Scholar 

  20. Hjortnaes, J. et al. Arterial and aortic valve calcification inversely correlates with osteoporotic bone remodelling: a role for inflammation. Eur. Heart J. 31, 1975–1984 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jaffer, F. A., Libby, P. & Weissleder, R. Optical and multimodality molecular imaging: insights into atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 29, 1017–1024 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kherlopian, A. et al. A review of imaging techniques for systems biology. BMC Syst. Biol. 2, 74 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hutson, H. N. et al. Calcific aortic valve disease is associated with layer-specific alterations in collagen architecture. PLoS ONE 11, e0163858 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Bertazzo, S. et al. Nano-analytical electron microscopy reveals fundamental insights into human cardiovascular tissue calcification. Nat. Mater. 12, 576–583 (2013).

    Article  CAS  PubMed  Google Scholar 

  25. Williams, R. M., Zipfel, W. R. & Webb, W. W. Multiphoton microscopy in biological research. Curr. Opin. Chem. Biol. 5, 603–608 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Georgakoudi, I. & Quinn, K. P. Optical imaging using endogenous contrast to assess metabolic state. Annu. Rev. Biomed. Eng. 14, 351–367 (2012).

    Article  CAS  PubMed  Google Scholar 

  27. So, P. T., Dong, C. Y., Masters, B. R. & Berland, K. M. Two-photon excitation fluorescence microscopy. Annu. Rev. Biomed. Eng. 2, 399–429 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Zipfel, W. R. et al. Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation. Proc. Natl Acad. Sci. USA 100, 7075–7080 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cui, J. Z. et al. Quantification of aortic and cutaneous elastin and collagen morphology in Marfan syndrome by multiphoton microscopy. J. Struct. Biol. 187, 242–253 (2014).

    Article  CAS  PubMed  Google Scholar 

  30. König, K., Schenke-Layland, K., Riemann, I. & Stock, U. Multiphoton autofluorescence imaging of intratissue elastic fibers. Biomaterials 26, 495–500 (2005).

    Article  PubMed  Google Scholar 

  31. Fitzmaurice, M. et al. Argon ion laser-excited autofluorescence in normal and atherosclerotic aorta and coronary arteries: morphologic studies. Am. Heart J. 118, 1028–1038 (1989).

    Article  CAS  PubMed  Google Scholar 

  32. Benninger, R. K. & Piston, D. W. Two‐photon excitation microscopy for the study of living cells and tissues. Curr. Protoc. Cell Biol. 4, 4.1124 (2013).

  33. Huang, S., Heikal, A. A. & Webb, W. W. Two-photon fluorescence spectroscopy and microscopy of NAD(P)H and flavoprotein. Biophys. J. 82, 2811–2825 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Croce, A. & Bottiroli, G. Autofluorescence spectroscopy and imaging: a tool for biomedical research and diagnosis. Eur. J. Histochem. 58, 2461 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Perry, S. W., Burke, R. M. & Brown, E. B. Two-photon and second harmonic microscopy in clinical and translational cancer research. Ann. Biomed. Eng. 40, 277–291 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Chen, X., Nadiarynkh, O., Plotnikov, S. & Campagnola, P. J. Second harmonic generation microscopy for quantitative analysis of collagen fibrillar structure. Nat. Protoc. 7, 654–669 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cicchi, R. et al. Scoring of collagen organization in healthy and diseased human dermis by multiphoton microscopy. J. Biophotonics 3, 34–43 (2010).

    Article  CAS  PubMed  Google Scholar 

  38. Williams, R. M., Zipfel, W. R. & Webb, W. W. Interpreting second-harmonic generation images of collagen I fibrils. Biophys. J. 88, 1377–1386 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Campagnola, P. J. & Loew, L. M. Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms. Nat. Biotechnol. 21, 1356–1360 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Liu, Z. et al. Rapid three-dimensional quantification of voxel-wise collagen fiber orientation. Biomed. Opt. Express 6, 2294–2310 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Liu, Z. et al. Automated quantification of three-dimensional organization of fiber-like structures in biological tissues. Biomaterials 116, 34–47 (2017).

    Article  CAS  PubMed  Google Scholar 

  42. Zoumi, A., Yeh, A. & Tromberg, B. J. Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two-photon excited fluorescence. Proc. Natl Acad. Sci. USA 99, 11014–11019 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Richards-Kortum, R. & Sevick-Muraca, E. Quantitative optical spectroscopy for tissue diagnosis. Annu. Rev. Phys. Chem. 47, 555–606 (1996).

    Article  CAS  PubMed  Google Scholar 

  44. Cho, A., Suzuki, S., Hatakeyama, J., Haruyama, N. & Kulkarni, A. B. A method for rapid demineralization of teeth and bones. Open Dent. J. 4, 223–229 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Berzina-Cimdina, L. & Borodajenko, N. in Infrared Spectroscopy—Materials Science, Engineering and Technology (ed. Theophile, T.) Ch. 6 (InTech, Rijeka, 2012).

  46. Ko, A. C. T. et al. Multimodal nonlinear optical imaging of atherosclerotic plaque development in myocardial infarction-prone rabbits. J. Biomed. Opt. 15, 020501 (2010).

    Article  PubMed  Google Scholar 

  47. Verbunt, R. J. A. M. et al. Characterization of ultraviolet laser-induced autofluorescence of ceroid deposits and other structures in atherosclerotic plaques as a potential diagnostic for laser angiosurgery. Am. Heart J. 123, 208–216 (1992).

    Article  CAS  PubMed  Google Scholar 

  48. Le, T. T., Langohr, I. M., Locker, M. J., Sturek, M. & Cheng, J.-X. Label-free molecular imaging of atherosclerotic lesions using multimodal nonlinear optical microscopy. J. Biomed. Opt.  12, 054007 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Wang, Y.-L. & Pelham R. J. Jr, in Methods in Enzymology Vol 298 (ed. Richard, B. V.) 489–496 (Academic, Cambridge, MA, 1998).

  50. O’Brien, K. D. Pathogenesis of calcific aortic valve disease: a disease process comes of age (and a good deal more). Arterioscler. Thromb. Vasc. Biol. 26, 1721–1728 (2006).

    Article  PubMed  Google Scholar 

  51. Evans, C. L. & Xie, X. S. Coherent anti-stokes Raman scattering microscopy: chemical imaging for biology and medicine. Annu. Rev. Anal. Chem. 1, 883–909 (2008).

    Article  CAS  Google Scholar 

  52. Sider, K. L., Blaser, M. C. & Simmons, C. A. Animal models of calcific aortic valve disease. Int. J. Inflam. 2011, 364310 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Tanaka, K. et al. Age-associated aortic stenosis in apolipoprotein E-deficient mice. J. Am. Coll. Cardiol. 46, 134–141 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Hutcheson, J. D., Aikawa, E. & Merryman, W. D. Potential drug targets for calcific aortic valve disease. Nat. Rev. Cardiol. 11, 218–231 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Aikawa, E. et al. Osteogenesis associates with inflammation in early-stage atherosclerosis evaluated by molecular imaging in vivo. Circulation 116, 2841–2850 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Giachelli, C. M. Ectopic calcification. Am. J. Pathol. 154, 671–675 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Richards‐Kortum, R. et al. Spectroscopic diagnosis of colonic dysplasia. Photochem. Photobiol. 53, 777–786 (1991).

    Article  PubMed  Google Scholar 

  58. Guerraty, M. & Mohler, E. R. Models of aortic valve calcification. J. Invest. Med. 55, 278–283 (2007).

    Article  Google Scholar 

  59. Hutcheson, J. D. et al. Genesis and growth of extracellular-vesicle-derived microcalcification in atherosclerotic plaques. Nat. Mater. 15, 335–343 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Clark, C. R., Bowler, M. A., Snider, J. C. & Merryman, W. D. Targeting cadherin-11 prevents Notch1-mediated calcific aortic valve disease. Circulation 135, 2448–2450 (2017).

    Article  PubMed  Google Scholar 

  61. Perosky, J. E. et al. Early detection of heterotopic ossification using near‐infrared optical imaging reveals dynamic turnover and progression of mineralization following Achilles tenotomy and burn injury. J. Orthopaed. Res. 32, 1416–1423 (2014).

    Article  CAS  Google Scholar 

  62. Zhang, Y. et al. A compact fiber-optic SHG scanning endomicroscope and its application to visualize cervical remodeling during pregnancy. Proc. Natl Acad. Sci. USA 109, 12878–12883 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Murari, K. et al. Compensation-free, all-fiber-optic, two-photon endomicroscopy at 1.55 μm. Opt. Lett. 36, 1299–1301 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Nishimura, R. et al. 2014 AHA/ACC guideline for the management of patients with valvular heart disease: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation 129, 2440–2492 (2014).

    Article  PubMed  Google Scholar 

  65. Mathieu, P. et al. The pathology and pathobiology of bicuspid aortic valve: state of the art and novel research perspectives. J. Pathol. Clin. Res. 1, 195–206 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Sethuraman, S., Amirian, J. H., Litovsky, S. H., Smalling, R. W. & Emelianov, S. Y. Spectroscopic intravascular photoacoustic imaging to differentiate atherosclerotic plaques. Opt. Express 16, 3362–3367 (2008).

    Article  CAS  PubMed  Google Scholar 

  67. Wang, B. et al. Intravascular photoacoustic imaging. IEEE J. Quantum Electron. 16, 588–599 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Fu, H. L. et al. Flexible miniature compound lens design for high-resolution optical coherence tomography balloon imaging catheter. J. Biomed. Opt. 13, 060502 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Hassan, T., Piton, N., Lachkar, S., Salaun, M. & Thiberville, L. A novel method for in vivo imaging of solitary lung nodules using navigational bronchoscopy and confocal laser microendoscopy. Lung 193, 773–778 (2015).

    Article  CAS  PubMed  Google Scholar 

  70. Achenbach, S. et al. Detection of calcified and noncalcified coronary atherosclerotic plaque by contrast-enhanced, submillimeter multidetector spiral computed tomography: a segment-based comparison with intravascular ultrasound. Circulation 109, 14–17 (2004).

    Article  PubMed  Google Scholar 

  71. Radi, M. J. Calcium oxalate crystals in breast biopsies. An overlooked form of microcalcification associated with benign breast disease. Arch. Pathol. Lab. Med. 113, 1367–1369 (1989).

    CAS  PubMed  Google Scholar 

  72. Sullivan, K., Quinn, K., Tang, K., Georgakoudi, I. & Black, L. III Extracellular matrix remodeling following myocardial infarction influences the therapeutic potential of mesenchymal stem cells. Stem Cell Res. Ther. 5, 1–16 (2014).

    Google Scholar 

  73. Quinlan, A. M. & Billiar, K. L. Investigating the role of substrate stiffness in the persistence of valvular interstitial cell activation. J. Biomed. Mater. Res. A 100, 2474–2482 (2012).

    PubMed  Google Scholar 

  74. Liao, P.-S., Chen, T.-S. & Chung, P.-C. A fast algorithm for multilevel thresholding. J. Inf. Sci. Eng. 17, 713–727 (2001).

    Google Scholar 

  75. Levitt, J. M. et al. Diagnostic cellular organization features extracted from autofluorescence images. Opt. Lett. 32, 3305–3307 (2007).

    Article  PubMed  Google Scholar 

  76. Xylas, J., Alt-Holland, A., Garlick, J., Hunter, M. & Georgakoudi, I. Intrinsic optical biomarkers associated with the invasive potential of tumor cells in engineered tissue models. Biomed. Opt. Express 1, 1387–1400 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Xylas, J. et al. Noninvasive assessment of mitochondrial organization in three-dimensional tissues reveals changes associated with cancer development. Int. J. Cancer 136, 322–332 (2015).

    Article  CAS  PubMed  Google Scholar 

  78. Pouli, D. et al. Imaging mitochondrial dynamics in human skin reveals depth-dependent hypoxia and malignant potential for diagnosis. Sci. Transl. Med. 8, 367ra169 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Zeadin, M. et al. Effect of leptin on vascular calcification in apolipoprotein E-deficient mice. Arterioscler. Thromb. Vasc. Biol. 29, 2069–2075 (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to M. Freytsis for help with collecting the human CAVD valve samples at Tufts Medical Center. We also thank the Jaffe Laboratory for the generous donation of freshly isolated ApoE–/– and wild-type mouse hearts. Financial support was provided by the National Institutes of Health–National Institute of Biomedical Imaging and Bioengineering (awards K99EB017723 and R00EB017723 to K.P.Q., R01HL114794 to G.S.H., P.W.H. and L.D.B., and R01EB007542 to I.G) and American Cancer Society Research Scholar Grant RSG-09-174-01-CCE to I.G.

Author information

Authors and Affiliations

Authors

Contributions

L.M.B. contributed to conception and design of the experiments, collection, assembly, analysis and interpretation of data, and writing and final approval of the paper. K.P.Q. performed data analysis and interpretation, and contributed to writing and final approval of the paper. Z.L. developed the computational model to quantitatively extract the component contributions from the images acquired at two emission bands and performed the corresponding calculations for both the human CAVD valves and the mouse model valves. G.S.H. and P.W.H. contributed to data interpretation and final approval of the paper. S.O. and C.L.E. performed CARS and TPEF imaging, as well as data interpretation of human CAVD and rat bone samples. G.S.H. also provided the human CAVD valve samples. I.G. directed the image acquisition and image analysis aspects of the study. L.D.B and I.G. contributed to the project conception and design, manuscript writing, data interpretation and final approval of the paper.

Corresponding authors

Correspondence to Lauren D. Black III or Irene Georgakoudi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Information

Supplementary figures and video legends

Life sciences reporting summary

Supplementary Video 1

Representative image stack of a human CAVD valve

Supplementary Video 2

Representative image stack of an EDTA-treated human CAVD valve

Supplementary Video 3

Representative image stack of SHG and TPEF for a human CAVD valve

Supplementary Video 4

Representative image stack of a rat bone

Supplementary Video 5

Representative image stack of an EDTA-treated rat bone

Supplementary Video 6

Representative image stack of a nodule grown on a PAAM gel

Supplementary Video 7

120-hour time lapse of a PAAM gel seeded with VICs with images of the mineralization taken every 8 hours

Supplementary Video 8

Cropped time lapse of calculated MAF images of nodules (ROI 1)

Supplementary Video 9

Cropped time lapse of calculated MAF images of nodules (ROI 2)

Supplementary Video 10

Cropped time lapse of calculated MAF images of nodules (ROI 3)

Supplementary Video 11

Cropped time lapse of calculated MAF images of nodules (ROI 4)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baugh, L.M., Liu, Z., Quinn, K.P. et al. Non-destructive two-photon excited fluorescence imaging identifies early nodules in calcific aortic-valve disease. Nat Biomed Eng 1, 914–924 (2017). https://doi.org/10.1038/s41551-017-0152-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41551-017-0152-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing