Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Flexible piezoelectric devices for gastrointestinal motility sensing

Abstract

Improvements in ingestible electronics with the capacity to sense physiological and pathophysiological states have transformed the standard of care for patients. Yet, despite advances in device development, significant risks associated with solid, non-flexible gastrointestinal transiting systems remain. Here, we report the design and use of an ingestible, flexible piezoelectric device that senses mechanical deformation within the gastric cavity. We demonstrate the capabilities of the sensor in both in vitro and ex vivo simulated gastric models, quantify its key behaviours in the gastrointestinal tract using computational modelling and validate its functionality in awake and ambulating swine. Our proof-of-concept device may lead to the development of ingestible piezoelectric devices that might safely sense mechanical variations and harvest mechanical energy inside the gastrointestinal tract for the diagnosis and treatment of motility disorders, as well as for monitoring ingestion in bariatric applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: PZT GI-S.
Fig. 2: Cell culture study and biocompatibility.
Fig. 3: In vitro experimental characterization.
Fig. 4: In vivo evaluation in Yorkshire swine model.
Fig. 5: In vivo evaluation in a Yorkshire swine model.

Similar content being viewed by others

References

  1. Jacobson, B. & Mackay, R. S. A pH-endoradiosonde. Lancet 272, 1224 (1957).

    Article  CAS  PubMed  Google Scholar 

  2. Cassilly, D. et al. Gastric emptying of a non-digestible solid: assessment with simultaneous SmartPill pH and pressure capsule, antroduodenal manometry, gastric emptying scintigraphy. Neurogastroenterol Motil. 20, 311–319 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Belknap, R. et al. Feasibility of an ingestible sensor-based system for monitoring adherence to tuberculosis therapy. PLoS ONE 8, e53373 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Traverso, G. et al. Physiologic status monitoring via the gastrointestinal tract. PLoS ONE 10, e0141666 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Iddan, G., Meron, G., Glukhovsky, A. & Swain, P. Wireless capsule endoscopy. Nature 405, 417 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Au-Yeung, K. Y. et al. Early clinical experience with networked system for promoting patient self-management. Am. J. Manag. Care 17, e277–e287 (2011).

    PubMed  Google Scholar 

  7. Liao, Z., Gao, R., Xu, C. & Li, Z. S. Indications and detection, completion, and retention rates of small-bowel capsule endoscopy: a systematic review. Gastrointest. Endosc. 71, 280–286 (2010).

    Article  PubMed  Google Scholar 

  8. Dagdeviren, C. et al. Conformal piezoelectric energy harvesting and storage from motions of the heart, lung, and diaphragm. Proc. Natl Acad. Sci. USA 111,1927–1932 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dagdeviren, C. et al. Recent progress in flexible and stretchable piezoelectric devices for mechanical energy harvesting, sensing and actuation. Extreme Mech. Lett. 9, 269–281 (2016).

    Article  Google Scholar 

  10. Dagdeviren, C. The future of bionic dynamos. Science 354, 1109 (2016).

    Article  PubMed  Google Scholar 

  11. Mostafalu, P. & Sonkusale, S. Flexible and transparent gastric battery: energy harvesting from gastric acid for endoscopy application. Biosens. Bioelectron. 54,292–296 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. Kim, J. Y. et al. Self-deployable current sources fabricated from edible materials. J. Mater. Chem. B 1, 3781–3788 (2013).

    Article  CAS  Google Scholar 

  13. Persano, L. et al. High performance, flexible piezoelectric devices based on aligned arrays of nanofibers of poly(vinylidenefluoride-co-trifluoroethylene). Nat. Commun. 4, 1633 (2013).

    Article  PubMed  Google Scholar 

  14. Persano, L., Dagdeviren, C., Marrucio, C., De Lorenzis, L. & Pisignano, D. Cooperativity in the enhanced piezoelectric response of polymer nanowires. Adv. Mater. 26, 7574–7580 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dagdeviren, C. et al. Transient, biocompatible electronics and energy harvesters based on ZnO. Small 9, 3398–3404 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. Sirohi, J. & Chopra, I. Fundamental understanding of piezoelectric strain sensors. J. Intell. Mater. Syst. Struct. 11, 246–257 (2000).

    Google Scholar 

  17. Yong, Y. K., Fleming, A. J. & Moheimani, S. O. A novel piezoelectric strain sensor for simultaneous damping and tracking control of a high-speed nanopositioner. IEEE/ASME Trans. Mechatron. 18, 1113–1121 (2013).

    Article  Google Scholar 

  18. Shi, Y., & Dagdeviren, C., Rogers, J. A., Gao, C. F. & Huang, Y. An analytic model for skin modulus measurement via conformal piezoelectric systems. J. Appl. Mech. T. ASME 82, 091007 (2015).

    Article  Google Scholar 

  19. Su, Y., Li, S., Li, R. & Dagdeviren, C. Splitting of neutral mechanical plane of conformal, multilayer piezoelectric mechanical energy harvester. Appl. Phys. Lett. 107, 041905 (2015).

    Article  Google Scholar 

  20. Dagdeviren, C. et al. Conformal piezoelectric systems for clinical and experimental characterization of soft tissue biomechanics. Nat. Mater. 14, 728–736 (2015).

    Article  CAS  PubMed  Google Scholar 

  21. Dagdeviren, C. et al. Conformable amplified lead zirconate titanate sensors with enhanced piezoelectric response for cutaneous pressure monitoring. Nat. Commun. 5, 4496 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. Famm, K., Litt, B., Tracey, K. J., Boyden, E. S. & Slaoui, M. Drug discovery: a jump-start for electroceuticals. Nature 496, 159–161 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yang, S. et al. Thermally resistant UV-curable epoxy–siloxane hybrid materials for light emitting diode (LED) encapsulation. J. Mater. Chem. 22, 8874–8880 (2012).

    Article  CAS  Google Scholar 

  24. Yagnamurthy, S. N. Electromechanical Behavior of PZT Thin Film Composites for RF-MEMS. Masters Thesis, Univ. Illinois at Urbana Champaign (2009).

  25. Su, Y. J., Quian, C. F., Zhao, M. H. & Zhang, T. Y. Microbridge testing of silicon oxide/silicon nitride bilayer films deposited on silicon wafers. Acta Materialia 48, 4901–4915 (2000).

    Article  CAS  Google Scholar 

  26. Sharpe, W. et al. Strain measurements of silicon dioxide microspecimens by digital imaging processing. Exp. Mech. 47, 649–658 (2007).

    Article  CAS  Google Scholar 

  27. Bellinger, A. M. et al. Oral, ultra-long-lasting drug delivery: application toward malaria elimination goals. Sci. Transl. Med. 8, 365 (2016).

    Article  Google Scholar 

  28. Poeggel, S. et al. Optical fibre pressure sensors in medical applications. Sensors 15, 17115–17148 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Merritt, J. S. & Weinhaus, F. The pressure curve for a rubber balloon. Am. J. Phys. 46, 976–977 (1978).

    Article  Google Scholar 

  30. Yu, L., Kim, B. J. & Meng, E. Chronically implanted pressure sensors: challenges and state of the field. Sensors 14, 20620–20644 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Bures, J. et al. Small intestinal bacterial overgrowth syndrome. World J. Gastroenterol. 16, 2978–2990 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Beyerlein, L. et al. Correlation between symptoms developed after the oral ingestion of 50 g lactose and results of hydrogen breath testing for lactose intolerance. Aliment. Pharmacol. Ther. 27, 659–665 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Nadeau, P. et al. Prolonged energy harvesting for ingestible devices.Nat. Biomed. Eng. 1, 0022 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Yeo, W.-H. et al. Multifunctional epidermal electronics printed directly onto the skin. Adv. Mater. 25, 2773–2778 (2013).

    Article  CAS  PubMed  Google Scholar 

  35. Holzapfel, G. A. Nonlinear Solid Mechanics (John Wiley & Sons, Chichester, 2000).

    Google Scholar 

  36. Overvelde, J. T. B., Kloek, T., D'haen, J. J. A. & Bertoldi, K. Amplifying the response of soft actuators by harnessing snap-through instabilities. Proc. Natl Acad. Sci. USA 112, 10863–10868 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jones, R. M. Mechanics of Composite Materials (Taylor & Francis Group, 1998).

Download references

Acknowledgements

We thank J. Haupt and M. Jamiel for help with the in vivo swine work. We thank Y-A. Lee for assistance with the SEM. We thank the Hope Babette Tang Histology Facility at the Koch Institute at MIT for the histology work and consultation. We also thank the MIT Microsystems Technology Laboratories and MIT Microscopy Core Facility. C.D. thanks the late G. Caliskanoglu for useful suggestions on the device design. This work was funded in part by a postdoctoral fellowship from the Swiss National Foundation (to T.v.E.), National Institutes of Health grant EB-000244, the Max Planck Research Award (Award Ltr Dtd. 2/11/08), the Alexander von Humboldt-Stiftung Foundation (to R.L.) and the Division of Gastroenterology, Brigham and Women’s Hospital (to G.T.).

Author information

Authors and Affiliations

Authors

Contributions

C.D. designed and fabricated the PZT GI-S. C.D. and G.T. designed the in vitro, ex vivo and in vivo experiments. T.v.E. performed the cell culture study and studied the biocompatibility of the PZT GI-S. C.D., P.J., T.B. and Z.W. designed an in vitro setup to simulate stomach behaviour and conducted in vitro trials of PZT GI-S. F.J. performed ABAQUS/Standard for finite element modelling. C.D., S.S., C.C. and L.B. designed and conducted the ex vivo studies. C.D., P.J., S.M., J.C., A.H. and G.T. performed in vivo evaluations of the GI-S in Yorkshire swine models. All authors discussed and interpreted the results, and wrote and edited the paper.

Corresponding authors

Correspondence to Canan Dagdeviren or Giovanni Traverso.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dagdeviren, C., Javid, F., Joe, P. et al. Flexible piezoelectric devices for gastrointestinal motility sensing. Nat Biomed Eng 1, 807–817 (2017). https://doi.org/10.1038/s41551-017-0140-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41551-017-0140-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing