Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Surgical data science for next-generation interventions

Interventional healthcare will evolve from an artisanal craft based on the individual experiences, preferences and traditions of physicians into a discipline that relies on objective decision-making on the basis of large-scale data from heterogeneous sources.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1
Fig. 2

References

  1. Obermeyer, Z. & Emanuel, E. J. N. Engl. J. Med.375, 1216–1219 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Porter, M. E., Larsson, S. & Lee, T. H. N. Engl. J. Med.374, 504–506 (2016).

    Article  CAS  PubMed  Google Scholar 

  3. Gawande, A. N. Engl. J. Med.366, 1716–1723 (2012).

    Article  CAS  PubMed  Google Scholar 

  4. Cho, Z.-H., Jones, J. P. & Singh, M. Foundations of Medical Imaging (Wiley, New York, 1993).

  5. Cleary, K. & Peters, T. M. Annu. Rev. Biomed. Eng.12, 119–142 (2010).

    Article  CAS  PubMed  Google Scholar 

  6. Weiser, T. G. et al. Lancet372, 139–144 (2008).

    Article  Google Scholar 

  7. Weiser, T. G. et al. Lancet385(Suppl. 2), S11 (2015).

    Article  Google Scholar 

  8. Glance, L. G., Osler, T. M. & Neuman, M. D. N. Engl. J. Med.370, 1379–1381 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Giguère, G. & Love, B. C. Proc. Natl Acad. Sci. USA110, 7613–7618 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Pohl, J. in Intelligent Decision Making: An AI-Based Approach (eds Phillips-Wren, G. et al.) 41–76 (Springer, Berlin Heidelberg, 2008).

  11. Shen, D., Wu, G. & Suk, H.-I. Annu. Rev. Biomed. Eng.19, 221–248 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Oakden-Rayner, L. et al. Sci. Rep7, 1648 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Mitchell, T. O. et al. J. Surg. Res.203, 56–63 (2016).

    Article  PubMed  Google Scholar 

  14. Lyu, H., Cooper, M., Patel, K., Daniel, M. & Makary, M. A. J. Healthc. Qual.38, 223–234 (2016).

    Article  PubMed  Google Scholar 

  15. Sanger, P. C. et al. J. Am. Coll. Surg.223, 259–270.e2 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ke, C. et al. J. Biomed. Inform.65, 22–33 (2017).

    Article  PubMed  Google Scholar 

  17. Lalys, F. et al. J. Neurosci. Methods212, 297–307 (2013).

    Article  PubMed  Google Scholar 

  18. Henry, K. E., Hager, D. N., Pronovost, P. J. & Saria, S. Sci. Transl. Med.7, 299ra122 (2015).

    Article  PubMed  Google Scholar 

  19. März, K. et al. Int. J. Comput. Assist. Radiol. Surg.10, 749–759 (2015).

    Article  PubMed  Google Scholar 

  20. Franke, S., Meixensberger, J. & Neumuth, T. J. Biomed. Inform.46, 152–159 (2013).

    Article  PubMed  Google Scholar 

  21. Padoy, N. et al. Med. Image. Anal.16, 632–641 (2012).

    Article  PubMed  Google Scholar 

  22. Katić, D. et al. Int. J. Comput. Assist. Radiol. Surg.11, 881–888 (2016).

    Article  PubMed  Google Scholar 

  23. Schoch, N. et al. Int. J. Comput. Assist. Radiol. Surg.11, 1051–1059 (2016).

    Article  CAS  PubMed  Google Scholar 

  24. Shademan, A. et al. Sci. Transl. Med.8, 337ra64 (2016).

    Article  PubMed  Google Scholar 

  25. Nathan, M. et al. J. Thorac. Cardiovasc. Surg.144, 1095–1101.e7 (2012).

    Article  PubMed  Google Scholar 

  26. Birkmeyer, J. D. et al. N. Engl. J. Med.369, 1434–1442 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. Nathwani, J. N. et al. J. Surg. Educ.73, e84–e90 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Vedula, S. S., Ishii, M. & Hager, G. D. Annu. Rev. Biomed. Eng.19, 301–325 (2017).

  29. Chen, Z. et al. In 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2343–2350 (IEEE, New York, 2016).

  30. Greenberg, C. C., Ghousseini, H. N., Pavuluri Quamme, S. R., Beasley, H. L. & Wiegmann, D. A. Ann. Surg.261, 32–34 (2015).

    Article  PubMed  Google Scholar 

  31. Singh, P., Aggarwal, R., Tahir, M., Pucher, P. H. & Darzi, A. A. Ann. Surg.261, 862–869 (2015).

    Article  PubMed  Google Scholar 

  32. Rojas, E., Munoz-Gama, J., Sepúlveda, M. & Capurro, D. J. Biomed. Inform.61, 224–236 (2016).

    Article  PubMed  Google Scholar 

  33. Uemura, M. et al. Int. J. Comput. Assist. Radiol. Surg.11, 543–552 (2016).

    Article  PubMed  Google Scholar 

  34. Russakovsky, O. et al. Int. J. Comput. Vis.115, 211–252 (2015).

    Article  Google Scholar 

  35. Lemke, H. U. & Vannier, M. W. Int. J. Comput. Assist. Radiol. Surg.1, 117–121 (2006).

    Article  Google Scholar 

  36. Rosse, C. & Mejino, J. L. V. Jr J. Biomed. Inform.36, 478–500 (2003).

    Article  PubMed  Google Scholar 

  37. Ashburner, M. et al. Nat. Genet.25, 25–29 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Maier-Hein, L. et al. in Medical Image Computing and Computer-Assisted Intervention – MICCAI 2014 (eds Golland, P. et al.) 438–445 (Springer International Publishing Switzerland, 2014).

  39. Warren, E. N. Engl. J. Med.375, 401–403 (2016).

    Article  PubMed  Google Scholar 

  40. Jordan, M. I. & Mitchell, T. M. Science349, 255–260 (2015).

    Article  CAS  PubMed  Google Scholar 

  41. Kansagra, A. P. et al. Acad. Radiol.23, 30–42 (2016).

    Article  PubMed  Google Scholar 

  42. Kumar, V. et al. Magn. Reson. Imaging30, 1234–1248 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Collins, F. S. & Tabak, L. A. Nature505, 612 (2014).

    Article  Google Scholar 

  44. Flin, R., Youngson, G. & Yule, S. Qual. Saf. Health. Care.16, 235–239 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Lalys, F. & Jannin, P. Int. J. Comput. Assist. Radiol. Surg.9, 495–511 (2014).

    Article  PubMed  Google Scholar 

  46. Mattmann, C. A. Nature493, 473–475 (2013).

    Article  CAS  PubMed  Google Scholar 

  47. Nichols, T. E. et al. Nat. Neurosci.20, 299–303 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the Transregional Collaborative Research Center (SFB/TRR) 125: Cognition-Guided Surgery, funded by the German Research Foundation (DFG), for sponsoring the workshop that served as basis for the manuscript (www.surgical-data-science.org/workshop2016). We also thank N. L. Rodas, M. A. Cypko and all other workshop participants for their valuable input during the workshop, and C. Feldmann for preparing the figures. We acknowledge the support of the European Research Council (ERC-2015-StG-37960), the US National Institutes of Health (NIH-R01EB01152407S1, NIH/NIBIB P41 EB015902, NIH/NCI U24CA180918, NIH/NIBIB P41 EB015898, NIH/NIBIB R01EB014955, NIH R01-DE025265), the US Department of Defense (DOD-W81XWH-13-1-0080), the Royal Society (UF140290) and the Link Foundation Fellowship in Advanced Simulation and Training.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lena Maier-Hein, Gregory D. Hager or Pierre Jannin.

Ethics declarations

Competing interests

R.T. is a paid consultant to Galen Robotics, Inc. (owned by Johns Hopkins University; JHU) and owns equity in the company, and is also a co-inventor of technology licensed to Galen Robotics, Elekta, and Intuitive Surgical, for which R.T. has or may receive a portion of licensing fees. Although this Comment does not explicitly reference Galen Robotics or the licensed technology, JHU policy requires that these relationships be disclosed. These arrangements have been reviewed and approved by JHU in accordance with its conflict of interest policy. A.P. is on the scientific advisory board of Stryker Endoscopy (Stryker Corporation; Kalamazoo, Michigan, USA). D.S. is a paid part-time member of Touch Surgery, Kinosis Ltd. Although this Comment does not explicitly reference Touch Surgery technology, University College London (UCL) policy requires that these relationships be disclosed. These arrangements have been reviewed and approved by UCL in accordance with its conflict of interest policy.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Maier-Hein, L., Vedula, S.S., Speidel, S. et al. Surgical data science for next-generation interventions. Nat Biomed Eng 1, 691–696 (2017). https://doi.org/10.1038/s41551-017-0132-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41551-017-0132-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing