Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Stimulation of 3D osteogenesis by mesenchymal stem cells using a nanovibrational bioreactor

A Publisher Correction to this article was published on 22 November 2017

This article has been updated


Bone grafts are one of the most commonly transplanted tissues. However, autologous grafts are in short supply, and can be associated with pain and donor-site morbidity. The creation of tissue-engineered bone grafts could help to fulfil clinical demand and provide a crucial resource for drug screening. Here, we show that vibrations of nanoscale amplitude provided by a newly developed bioreactor can differentiate a potential autologous cell source, mesenchymal stem cells (MSCs), into mineralized tissue in 3D. We demonstrate that nanoscale mechanotransduction can stimulate osteogenesis independently of other environmental factors, such as matrix rigidity. We show this by generating mineralized matrix from MSCs seeded in collagen gels with stiffness an order of magnitude below the stiffness of gels needed to induce bone formation in vitro. Our approach is scalable and can be compatible with 3D scaffolds.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Development of the nanovibrational bioreactor.
Fig. 2: Characterization of 3D collagen gel culture on the vibrational bioreactor.
Fig. 3: Confirmation of bone mineralization in 3D through nanovibrational stimulation.
Fig. 4: Testing for channel and phenotype sensitivity to cytoskeletal tension.
Fig. 5: Testing for TRPV involvement in nanovibration-stimulated osteogenic pathways.
Fig. 6: Testing for TRPV and Wnt involvement in nanovibration-stimulated osteogenic stimulation using metabolomics.
Fig. 7: Testing for TRPV involvement in nanovibration-stimulated osteogenesis.

Change history

  • 22 November 2017

    In the version of this Article originally published, in Fig. 4f, the asterisk was missing; in Fig. 6a–c, the labels ‘Wnt/β-catenin signalling’, ‘Wnt/Ca+ pathway’ and ‘ERK’ and their associated lines/arrows were missing; and in Fig. 6d and in the sentence beginning “In MSCs that were...”, ‘myosin’ and ‘nanostimulated’, respectively, were spelt incorrectly. These errors have now been corrected in all versions of the Article.


  1. 1.

    Giannoudis, P.  V., Chris Arts, J.  J., Schmidmaier, G. & Larsson, S. What should be the characteristics of the ideal bone graft substitute? Injury42, S1–S2 (2011).

    PubMed  Google Scholar 

  2. 2.

    Myeroff, C. & Archdeacon, M. Autogenous bone graft: donor sites and techniques. J. Bone Joint Surg. Am.93, 2227–2236 (2011).

    PubMed  Article  Google Scholar 

  3. 3.

    Dimitriou, R., Mataliotakis, G.  I., Angoules, A.  G., Kanakaris, N.  K. & Giannoudis, P.  V. Complications following autologous bone graft harvesting from the iliac crest and using the RIA: a systematic review. Injury42, S3–S15 (2011).

    PubMed  Article  Google Scholar 

  4. 4.

    Garcia-Gareta, E., Coathup, M.  J. & Blunn, G.  W. Osteoinduction of bone grafting materials for bone repair and regeneration. Bone81, 112–121 (2015).

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Dove, A. Drug screening—beyond the bottleneck. Nat. Biotechnol.17, 859–863 (1999).

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    Dalby, M.  J. et al. The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. Nat. Mater.6, 997–1003 (2007).

    CAS  PubMed  Article  Google Scholar 

  7. 7.

    Wen, J. H. et al. Interplay of matrix stiffness and protein tethering in stem cell differentiation. Nat. Mater. 13, 979–987 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  8. 8.

    Murphy, W.  L., McDevitt, T.  C. & Engler, A.  J. Materials as stem cell regulators. Nat. Mater.13, 547–557 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. 9.

    Engler, A.  J., Sweeney, H.  L., Discher, D.  E. & Schwarzbauer, J.  E. Extracellular matrix elasticity directs stem cell differentiation. J. Musculoskelet. Neur. Inter.7, 335 (2007).

    CAS  Google Scholar 

  10. 10.

    Curran, J.  M. et al. Introducing dip pen nanolithography as a tool for controlling stem cell behaviour: unlocking the potential of the next generation of smart materials in regenerative medicine. Lab Chip10, 1662–1670 (2010).

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    Kloxin, A.  M., Kasko, A.  M., Salinas, C.  N. & Anseth, K.  S. Photodegradable hydrogels for dynamic tuning of physical and chemical properties. Science324, 59–63 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. 12.

    Benoit, D.  S., Schwartz, M.  P., Durney, A.  R. & Anseth, K.  S. Small functional groups for controlled differentiation of hydrogel-encapsulated human mesenchymal stem cells. Nat. Mater.7, 816–823 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. 13.

    Khetan, S. et al. Degradation-mediated cellular traction directs stem cell fate in covalently crosslinked three-dimensional hydrogels. Nat. Mater.12, 458–465 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  14. 14.

    Rauh, J., Milan, F., Gunther, K.  P. & Stiehler, M. Bioreactor systems for bone tissue engineering. Tissue Eng. Rev.17, 263–280 (2011).

    CAS  Article  Google Scholar 

  15. 15.

    Epstein, N.  E. Complications due to the use of BMP/INFUSE in spine surgery: the evidence continues to mount. Surg. Neurol. Inter.4, S343–S352 (2013).

    Article  Google Scholar 

  16. 16.

    Salter, E. et al. Bone tissue engineering bioreactors: a role in the clinic? Tissue Eng.18, 62–75 (2012).

    CAS  Article  Google Scholar 

  17. 17.

    Pemberton, G.  D. et al. Nanoscale stimulation of osteoblastogenesis from mesenchymal stem cells: nanotopography and nanokicking. Nanomedicine10, 547–560 (2015).

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Nikukar, H. et al. Osteogenesis of mesenchymal stem cells by nanoscale mechanotransduction. ACS Nano7, 2758–2767 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. 19.

    McBeath, R., Pirone, D.  M., Nelson, C.  M., Bhadriraju, K. & Chen, C.  S. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev. Cell6, 483–495 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. 20.

    Kilian, K.  A., Bugarija, B., Lahn, B.  T. & Mrksich, M. Geometric cues for directing the differentiation of mesenchymal stem cells. Proc. Natl Acad. Sci. USA107, 4872–4877 (2010).

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    Abbott, B.  P. et al. Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett.116, 061102 (2016).

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    Hakansson, B., Brandt, A., Carlsson, P. & Tjellstrom, A. Resonance frequencies of the human skull in vivo. J. Acoustic. Soc. Am.95, 1474–1481 (1994).

    CAS  Article  Google Scholar 

  23. 23.

    Dalby, M.  J., Gadegaard, N. & Oreffo, R.  O. Harnessing nanotopography and integrin-matrix interactions to influence stem cell fate. Nat. Mater.13, 558–569 (2014).

    CAS  PubMed  Article  Google Scholar 

  24. 24.

    McNamara, L.  E. et al. Skeletal stem cell physiology on functionally distinct titania nanotopographies. Biomaterials32, 7403–7410 (2011).

    CAS  PubMed  Article  Google Scholar 

  25. 25.

    Yang, J. et al. Nanotopographical induction of osteogenesis through adhesion, bone morphogenic protein cosignaling, and regulation of microRNAs. ACS Nano8, 9941–9953 (2014).

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    Engler, A.  J., Sen, S., Sweeney, H.  L. & Discher, D.  E. Matrix elasticity directs stem cell lineage specification. Cell126, 677–689 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. 27.

    Masuyama, R. et al. TRPV4-mediated calcium influx regulates terminal differentiation of osteoclasts. Cell Metab.8, 257–265 (2008).

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Coste, B. et al. Piezo proteins are pore-forming subunits of mechanically activated channels. Nature483, 176–181 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. 29.

    Kim, S.  E., Coste, B., Chadha, A., Cook, B. & Patapoutian, A. The role of Drosophila Piezo in mechanical nociception. Nature483, 209–212 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. 30.

    Kuipers, A. J., Middelbeek, J. & van Leeuwen, F. N. Mechanoregulation of cytoskeletal dynamics by TRP channels. Europ. J. Cell Biol.91, 834–846 (2012).

    CAS  PubMed  Article  Google Scholar 

  31. 31.

    Bando, Y., Hirano, T. & Tagawa, Y. Dysfunction of KCNK potassium channels impairs neuronal migration in the developing mouse cerebral cortex. Cerebr. Cort.24, 1017–1029 (2014).

    Article  Google Scholar 

  32. 32.

    Lee, W. et al. Synergy between Piezo1 and Piezo2 channels confers high-strain mechanosensitivity to articular cartilage. Proc. Natl Acad. Sci. USA111, E5114–E5122 (2014).

    CAS  PubMed  Article  Google Scholar 

  33. 33.

    Zhang, W., Yan, Z., Jan, L.  Y. & Jan, Y.  N. Sound response mediated by the TRP channels NOMPC, NANCHUNG, and INACTIVE in chordotonal organs of Drosophila larvae. Proc. Natl Acad. Sci. USA110, 13612–13617 (2013).

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    Maksimovic, S. et al. Epidermal Merkel cells are mechanosensory cells that tune mammalian touch receptors. Nature509, 617–621 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. 35.

    Lieben, L. & Carmeliet, G. The involvement of TRP channels in bone homeostasis. Front. Endocrinol.3, 99 (2012).

    Article  Google Scholar 

  36. 36.

    Idris, A.  I., Landao-Bassonga, E. & Ralston, S.  H. The TRPV1 ion channel antagonist capsazepine inhibits osteoclast and osteoblast differentiation in vitro and ovariectomy induced bone loss in vivo. Bone46, 1089–1099 (2010).

    CAS  PubMed  Article  Google Scholar 

  37. 37.

    Clapham, D. E. TRP channels as cellular sensors. Nature426, 517–524 (2003).

    CAS  PubMed  Article  Google Scholar 

  38. 38.

    Bae, C., Sachs, F. & Gottlieb, P.  A. The mechanosensitive ion channel Piezo1 is inhibited by the peptide GsMTx4. Biochemistry50, 6295–6300 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. 39.

    Chen, J. et al. Selective blockade of TRPA1 channel attenuates pathological pain without altering noxious cold sensation or body temperature regulation. Pain152, 1165–1172 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  40. 40.

    Lee, L.  C. et al. Nanotopography controls cell cycle changes involved with skeletal stem cell self-renewal and multipotency. Biomaterials116, 10–20 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. 41.

    Ge, C. et al. Reciprocal control of osteogenic and adipogenic differentiation by ERK/MAP kinase phosphorylation of Runx2 and PPARγ transcription factors. J. Cell Physiol.231, 587–596 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. 42.

    Cheema, U., Chuo, C.-P., Sarathchandra, P., Nazhat, S.  N. & Brown, R.  A. Engineering functional collagen scaffolds: cyclical loading increases material strength and fibril aggregation. Adv. Func Mater.17, 2426–2431 (2007).

    CAS  Article  Google Scholar 

  43. 43.

    Discher, D.  E., Mooney, D.  J. & Zandstra, P.  W. Growth factors, matrices, and forces combine and control stem cells. Science324, 1673–1677 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  44. 44.

    Swift, J. et al. Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation. Science341, 1240104 (2013).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  45. 45.

    Huebsch, N. et al. Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate. Nat. Mater.9, 518–526 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. 46.

    Lai, V.  K., Lake, S.  P., Frey, C.  R., Tranquillo, R.  T. & Barocas, V.  H. Mechanical behavior of collagen-fibrin co-gels reflects transition from series to parallel interactions with increasing collagen content. J. Biomech. Eng.134, 011004 (2012).

    PubMed  Article  Google Scholar 

  47. 47.

    Gentleman, E. et al. Comparative materials differences revealed in engineered bone as a function of cell-specific differentiation. Nat. Mater.8, 763–770 (2009).

    CAS  PubMed  Article  Google Scholar 

  48. 48.

    Vandorpe, D. H. & Morris, C. E. Stretch activation of the Aplysia S-channel. J. Membr. Biol.127, 205–214 (1992).

    CAS  PubMed  Article  Google Scholar 

  49. 49.

    Stein, G.  S. & Lian, J.  B. Molecular mechanisms mediating proliferation/differentiation interrelationships during progressive development of the osteoblast phenotype. Endocr. Rev.14, 424–442 (1993).

    CAS  PubMed  Article  Google Scholar 

  50. 50.

    Liu, Y. et al. Hydrogen sulfide maintains mesenchymal stem cell function and bone homeostasis via regulation of Ca2+ channel sulfhydration. Cell Stem Cell15, 66–78 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  51. 51.

    Gaur, T. et al. Canonical WNT signaling promotes osteogenesis by directly stimulating Runx2 gene expression. J. Biol. Chem.280, 33132–33140 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  52. 52.

    Tsimbouri, P.  M. et al. Using nanotopography and metabolomics to identify biochemical effectors of multipotency. ACS Nano6, 10239–10249 (2012).

    CAS  PubMed  Article  Google Scholar 

  53. 53.

    Agosti, J.  K., Chandler, L.  A., Anderton, C.  M. & Clark, R. M. Serial sharp debridement and formulated collagen gel to treat pressure ulcers in elderly long-term care patients: a case study. Ostomy Wound Manage.59, 43–49 (2013).

    PubMed  Google Scholar 

  54. 54.

    Smith, C.  A., Want, E.  J., O’Maille, G., Abagyan, R. & Siuzdak, G. XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal. Chem.78, 779–787 (2006).

    CAS  PubMed  Article  Google Scholar 

  55. 55.

    Scheltema, R.  A., Jankevics, A., Jansen, R.  C., Swertz, M.  A. & Breitling, R. PeakML/mzMatch: a file format, Java library, R library, and tool-chain for mass spectrometry data analysis. Anal. Chem.83, 2786–2793 (2011).

    CAS  PubMed  Article  Google Scholar 

  56. 56.

    Creek, D.  J., Jankenevics, A., Burgess, K.  V., Breitling, R. & Barrett, M.  P. IDEOM: an excel interface for analysis of LC-MS based metabolomics data. Bioinformatics28, 1048–1049 (2012).

    CAS  PubMed  Article  Google Scholar 

  57. 57.

    Creek, D.  J. et al. Toward global metabolomics analysis with hydrophilic interaction liquid chromatography-mass spectrometry: improved metabolite identification by retention time prediction. Anal. Chem.83, 8703–8710 (2011).

    CAS  PubMed  Article  Google Scholar 

Download references


This work was supported by grants to S.R. and M.J.D. from the BBSRC, BBSRC/SFI and EPSRC (BB/N012690/1, BB/P00220X/1, EP/N013905/1, EP/N012631/1 and EP/P001114/1), along with a Wolfson Merit Award from The Royal Society and a programme grant from Find a Better Way. M.J.P.B. is funded by SFI grant nos. 11/SIRG/B2135 and 13/RC/2073. P.G.C. was funded by an STFC/BBSRC fellowship. We thank J. Hough, H. Nikukar, I. Tifenbrun and K. Robertson for their discussion, C.-A. Smith for technical support, and E. Manson for help with metabolite analysis. We also thank C. Boyle, S. Robertson and P. Campsie for help with the construction of the bioreactor.

Author information




A.S.G.C. was the inspiration behind this work, to whom it is dedicated. P.M.T., P.G.C., G.D.P., J.Y., V.J., W.O., C.G.-G., D.T. and C.V.G. performed the laboratory experiments. P.M.T., P.G.C., G.D.P., W.O., K.B., G.B., M.J.P.B., M.S.-S., S.R. and M.J.D. analysed the data. P.M.T., P.G.C., G.D.P., M.J.P.B., A.S.G.C., M.S.S., S.R. and M.J.D. devised experiments. S.R. and M.J.D. supervised the research. P.M.T., P.G.C., G.D.P., M.S.S., S.R. and M.J.D. wrote the manuscript. P.M.T., P.G.C., S.R. and M.J.D. revised the manuscript.

Corresponding authors

Correspondence to Stuart Reid or Matthew J. Dalby.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tsimbouri, P.M., Childs, P.G., Pemberton, G.D. et al. Stimulation of 3D osteogenesis by mesenchymal stem cells using a nanovibrational bioreactor. Nat Biomed Eng 1, 758–770 (2017).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing