Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Multiplexed enrichment of rare DNA variants via sequence-selective and temperature-robust amplification

A Publisher Correction to this article was published on 22 November 2017

This article has been updated

Abstract

Rare DNA-sequence variants hold important clinical and biological information, but existing detection techniques are expensive, complex, allele-specific, or don’t allow for significant multiplexing. Here, we report a temperature-robust polymerase-chain-reaction method, which we term blocker displacement amplification (BDA), that selectively amplifies all sequence variants, including single-nucleotide variants (SNVs), within a roughly 20-nucleotide window by 1,000-fold over wild-type sequences. This allows for easy detection and quantitation of hundreds of potential variants originally at ≤0.1% in allele frequency. BDA is compatible with inexpensive thermocycler instrumentation and employs a rationally designed competitive hybridization reaction to achieve comparable enrichment performance across annealing temperatures ranging from 56 °C to 64 °C. To show the sequence generality of BDA, we demonstrate enrichment of 156 SNVs and the reliable detection of single-digit copies. We also show that the BDA detection of rare driver mutations in cell-free DNA samples extracted from the blood plasma of lung-cancer patients is highly consistent with deep sequencing using molecular lineage tags, with a receiver operator characteristic accuracy of 95%.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Temperature-robust enrichment of rare alleles by blocker displacement amplification (BDA).
Fig. 2: Quantitative PCR results on BDA enrichment.
Fig. 3: Temperature robustness of BDA.
Fig. 4: Multiplex BDA assays.
Fig. 5: Hotspot multiplexing.
Fig. 6: Rare allele quantitation with BDA.

Similar content being viewed by others

Change history

  • 22 November 2017

    In the version of this Article originally published, owing to a technical error, the Life Sciences Reporting Summary was not included; this summary is now available.

References

  1. Bettegowda, C. et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci. Transl. Med.6, 224ra24 (2014).

    PubMed  PubMed Central  Google Scholar 

  2. Wan, J. C. M. et al. Liquid biopsies come of age: towards implementation of circulating tumour DNA. Nat. Rev. Cancer17, 223–238 (2017).

    CAS  PubMed  Google Scholar 

  3. Heitzer, E., Ulz, P. & Geigl, J. B. Circulating tumor DNA as a liquid biopsy for cancer. Clin. Chem.61, 112–123 (2015).

    CAS  PubMed  Google Scholar 

  4. Schwarzenbach, H., Hoon, D. S. B. & Pantel, K. Cell-free nucleic acids as biomarkers in cancer patients. Nat. Rev. Cancer11, 426–437 (2011).

    CAS  PubMed  Google Scholar 

  5. Lewis, K. Persister cells, dormancy and infectious disease. Nat. Rev. Microbiol.5, 48–56 (2007).

    CAS  PubMed  Google Scholar 

  6. Jones, S. E. & Lennon, J. T. Dormancy contributes to the maintenance of microbial diversity. Proc. Natl Acad. Sci. USA107, 5881–5886 (2010).

    CAS  PubMed  Google Scholar 

  7. Ford, C. B. et al. Mycobacterium tuberculosis mutation rate estimates from different lineages predict substantial differences in the emergence of drug-resistant tuberculosis. Nat. Genet.45, 784–790 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Khodakov, D., Wang, C. & Zhang, D. Y. Diagnostics based on nucleic acid sequence variant profiling: PCR, hybridization, and NGS approaches. Adv. Drug Deliv. Rev.105, 3–19 (2016).

    CAS  PubMed  Google Scholar 

  9. Newton, C. R. et al. Analysis of any point mutation in DNA. The amplification refractory mutation system (ARMS). Nucleic Acids Res.17, 2503–2516 (1989).

    PubMed  PubMed Central  Google Scholar 

  10. Vargas, D. Y., Kramer, F. R., Tyagi, S. & Marras, S. A. Multiplex real-time PCR assays that measure the abundance of extremely rare mutations associated with cancer. PLoS ONE11, e0156546 (2016).

    PubMed  PubMed Central  Google Scholar 

  11. Gonzalez de Castro, D. et al. A comparison of three methods for detecting KRAS mutations in formalin-fixed colorectal cancer specimens. Br. J. Cancer107, 345–351 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Morlan, J., Baker, J. & Sinicropi, D. Mutation detection by real-time PCR: a simple, robust and highly selective method. PLoS ONE4, e4584 (2009).

    PubMed  PubMed Central  Google Scholar 

  13. Didelot, A. et al. Competitive allele specific TaqMan PCR for KRAS, BRAF and EGFR mutation detection in clinical formalin fixed paraffin embedded samples. Exp. Mol. Pathol.92, 275–280 (2012).

    CAS  PubMed  Google Scholar 

  14. Lanman, R. B. et al. Analytical and clinical validation of a digital sequencing panel for quantitative, highly accurate evaluation of cell-free circulating tumor DNA. PLoS ONE10, e0140712 (2015).

    PubMed  PubMed Central  Google Scholar 

  15. Kinde, I., Wu, J., Papadopoulos, N., Kinzler, K. W. & Vogelstein, B. Detection and quantification of rare mutations with massively parallel sequencing. Proc. Natl Acad. Sci. USA108, 9530–9535 (2011).

    PubMed  Google Scholar 

  16. Newman, A. M. et al. An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage. Nat. Med.20, 548–554 (2014).

    PubMed Central  Google Scholar 

  17. Pel, J. et al. Nonlinear electrophoretic response yields a unique parameter for separation of biomolecules. Proc. Natl Acad. Sci. USA106, 14796–14801 (2009).

    CAS  PubMed  Google Scholar 

  18. Kidess, E. et al. Mutation profiling of tumor DNA from plasma and tumor tissue of colorectal cancer patients with a novel, high-sensitivity multiplexed mutation detection platform. Oncotarget6, 2549 (2015).

    PubMed  Google Scholar 

  19. Wang, J. S. & Zhang, D. Y. Simulation-guided DNA probe design for consistently ultraspecific hybridization. Nat. Chem.7, 545–553 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Song, C. et al. Elimination of unaltered DNA in mixed clinical samples via nuclease-assisted minor-allele enrichment. Nucleic Acids Res.44, e146 (2016).

    PubMed  PubMed Central  Google Scholar 

  21. Orum, H. et al. Single base pair mutation analysis by PNA directed PCR clamping. Nucleic Acids Res.21, 5332–5336 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Arcila, M., Lau, C., Nafa, K. & Ladanyi, M. Detection of KRAS and BRAF mutations in colorectal carcinoma: roles for high-sensitivity locked nucleic acid-PCR sequencing and broad-spectrum mass spectrometry genotyping. J. Mol. Diagnost.13, 64–73 (2011).

    CAS  Google Scholar 

  23. Li, J. et al. Replacing PCR with COLD-PCR enriches variant DNA sequences and redefines the sensitivity of genetic testing. Nat. Med.14, 579–584 (2008).

    CAS  PubMed  Google Scholar 

  24. Milbury, C. A., Li, J. & Makrigiorgos, G. M. Ice-COLD-PCR enables rapid amplification and robust enrichment for low-abundance unknown DNA mutations. Nucleic Acids Res.39, e2 (2011).

    PubMed  Google Scholar 

  25. SantaLucia, J. Jr & Hicks, D. The thermodynamics of DNA structural motifs. Annu. Rev. Biophys. Biomol. Struct.33, 415–440 (2004).

    CAS  PubMed  Google Scholar 

  26. Owczarzy, R., Moreira, B. G., You, Y., Behlke, M. A. & Walder, J. A. Predicting stability of DNA duplexes in solutions containing magnesium and monovalent cations. Biochemistry47, 5336–5353 (2008).

    CAS  PubMed  Google Scholar 

  27. Zhang, D. Y., Chen, S. X. & Yin, P. Thermodynamic optimization of nucleic acid hybridization specificity. Nat. Chem.4, 208–214 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Wu, L. R. et al. Continuously tunable nucleic acid hybridization probes. Nat. Methods12, 1191–1196 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Dobosy, J. R. et al. RNase H-dependent PCR (rhPCR): improved specificity and single nucleotide polymorphism detection using blocked cleavable primers. BMC Biotechnol.11, 80 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang, C., Bae, J. H. & Zhang, D. Y. Native characterization of nucleic acid motif thermodynamics via non-covalent catalysis. Nat. Commun.7, 10319 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 1000 Genomes Project Consortium. An integrated map of genetic variation from 1,092 human genomes. Nature491, 56–65 (2012).

    Google Scholar 

  32. Marx, V. PCR heads into the field. Nat. Methods12, 393–397 (2015).

    CAS  PubMed  Google Scholar 

  33. http://www.minipcr.com/

  34. Lievre, A. et al. KRAS mutation status is predictive of response to cetuximab therapy in colorectal cancer. Cancer Res.66, 3992–3995 (2006).

    CAS  PubMed  Google Scholar 

  35. Narayan, A. et al. Ultrasensitive measurement of hotspot mutations in tumor DNA in blood using error-suppressed multiplexed deep sequencing. Cancer Res.72, 3492–3498 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Garcia-Murillas, I. et al. Mutation tracking in circulating tumor DNA predicts relapse in early breast cancer. Sci. Transl. Med.7, 302ra133 (2015).

    PubMed  Google Scholar 

  37. Imperiale, T. F. et al. Multitarget stool DNA testing for colorectal-cancer screening. N. Engl. J. Med.370, 1287–1297 (2014).

    CAS  PubMed  Google Scholar 

  38. Underhill, H. R. et al. Fragment length of circulating tumor DNA. PLoS Genet.12, e1006162 (2016).

    PubMed  PubMed Central  Google Scholar 

  39. Mouliere, F. et al. High fragmentation characterizes tumour-derived circulating DNA. PLoS ONE6, e23418 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Aird, D. et al. Analyzing and minimizing PCR amplification bias in Illumina sequencing libraries. Genome Biol.12, R18 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Ross, M. G. et al. Characterizing and measuring bias in sequence data. Genome Biol.14, R51 (2013).

    PubMed  PubMed Central  Google Scholar 

  42. Laehnemann, D., Borkhardt, A. & McHardy, A. C. Denoising DNA deep sequencing data: high-throughput sequencing errors and their correction. Brief. Bioinform.17, 154–179 (2016).

    CAS  PubMed  Google Scholar 

  43. Forbes, S. A. et al. COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res.39, D945–D950 (2010).

    PubMed  PubMed Central  Google Scholar 

  44. Welter, D. et al. The NHGRI GWAS Catalog, a curated resource of SNP-trait associations. Nucleic Acids Res.42, D1001–D1006 (2014).

    CAS  PubMed  Google Scholar 

  45. Hardenbol, P. et al. Multiplexed genotyping with sequence-tagged molecular inversion probes. Nat. Biotechnol.21, 673–678 (2003).

    CAS  PubMed  Google Scholar 

  46. Hiatt, J. B., Pritchard, C. C., Salipante, S. J., O’Roak, B. J. & Shendure, J. Single molecule molecular inversion probes for targeted, high-accuracy detection of low-frequency variation. Genome Res.23, 843–854 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Narayan, A., Bommakanti, A. & Patel, A. A. High-throughput RNA profiling via up-front sample parallelization. Nat. Methods12, 343–346 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank J. H. Bae and J. S. Wang for experimental advice; C. Lee and G. Bao for advice and for use of their ddPCR instrument; D. Khodakov for initial testing of BDA on the MiniPCR platform; P. Song for assistance with gel electrophoresis; and A. Narayan for testing BDA in A.A.P.'s lab at the Yale School of Medicine. This work was funded by CPRIT grant RP140132 and NIH grant R01CA203964 to D.Y.Z., and NIH grant R01CA197486 to A.A.P.

Author information

Authors and Affiliations

Authors

Contributions

L.R.W. conceived the project, designed and conducted the experiments, analysed the data, and wrote the paper. S.X.C. designed the experiments, wrote automated design software, and analysed the data. Y.W. conducted the experiments and analysed the data. A.A.P. provided clinical samples and analysed the data. D.Y.Z. conceived the project, guided experimental design, analysed the data, and wrote the paper.

Corresponding author

Correspondence to David Yu Zhang.

Ethics declarations

Competing interests

There is a patent pending on the BDA system described in this work. D.Y.Z. is a co-founder and significant equity holder of Nuprobe Global, a startup commercializing BDA technology

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Information

Supplementary discussion, figures, methods, data and code.

Life Sciences Reporting Summary.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, L.R., Chen, S.X., Wu, Y. et al. Multiplexed enrichment of rare DNA variants via sequence-selective and temperature-robust amplification. Nat Biomed Eng 1, 714–723 (2017). https://doi.org/10.1038/s41551-017-0126-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41551-017-0126-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing