Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Versatile synthetic alternatives to Matrigel for vascular toxicity screening and stem cell expansion

Abstract

The physiological relevance of Matrigel as a cell-culture substrate and in angiogenesis assays is often called into question. Here, we describe an array-based method for the identification of synthetic hydrogels that promote the formation of robust in vitro vascular networks for the detection of putative vascular disruptors and that support human embryonic stem cell expansion and pluripotency. We identified hydrogel substrates that promote endothelial-network formation by primary human umbilical vein endothelial cells and by endothelial cells derived from human-induced pluripotent stem cells, and used the hydrogels with endothelial networks to identify angiogenesis inhibitors. The synthetic hydrogels showed superior sensitivity and reproducibility over Matrigel when known inhibitors were evaluated, as well as in a blinded screen of a subset of 38 chemicals, selected according to predicted vascular disruption potential, from the Toxicity ForeCaster library of the United States Environmental Protection Agency. We propose that the identified synthetic hydrogels are suitable alternatives to Matrigel for common cell-culture applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: An endothelial-cell-culture system identifies environments that enable endothelial-network formation on synthetic PEG-based hydrogels.
Figure 2: Visualization and quantification of endothelial networks on synthetic hydrogels and Matrigel.
Figure 3: Concentration-dependent inhibition of endothelial-network formation by the vascular inhibitors Vatalanib (PTK787), Semaxinib (SU5416) and sFlt-1, measured as percent change in network area compared with vehicle controls.
Figure 4: Concentration-dependent inhibition of endothelial-network formation by the vascular inhibitors anti-VEGF, Prinomastat hydrochloride and Sutent, measured as percent change in network area compared with vehicle controls.
Figure 5: Identification of vascular inhibitors from a subset of candidate chemical compounds from the ToxCast library with the use of synthetic hydrogel versus Matrigel systems.
Figure 6: Material-dependent maintenance of hESC pluripotency.

Similar content being viewed by others

References

  1. Knudsen, T. B. & Kleinstreuer, N. C. Disruption of embryonic vascular development in predictive toxicology. Birth Defects Res. C Embryo Today 93, 312–323 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. De Falco, S. Antiangiogenesis therapy: an update after the first decade. Korean J. Intern. Med. 29, 1–11 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Folkman, J. & Haudenschild, C. Angiogenesis in vitro. Nature 288, 551–556 (1980).

    Article  CAS  PubMed  Google Scholar 

  4. Kubota, Y., Kleinman, H. K., Martin, G. R. & Lawley, T. J. Role of laminin and basement membrane in the morphological differentiation of human endothelial cells into capillary-like structures. J. Cell Biol. 107, 1589–1598 (1988).

    Article  CAS  PubMed  Google Scholar 

  5. Faulkner, A. et al. A thin layer angiogenesis assay: a modified basement matrix assay for assessment of endothelial cell differentiation. BMC Cell. Biol. 15, 41 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Arnaoutova, I. & Kleinman, H. K. In vitro angiogenesis: endothelial cell tube formation on gelled basement membrane extract. Nat. Protoc. 5, 628–635 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. Crawford, Y. & Ferrara, N. VEGF inhibition: insights from preclinical and clinical studies. Cell Tissue Res. 335, 261–269 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Kerbel, R. & Folkman, J. Clinical translation of angiogenesis inhibitors. Nat. Rev. Cancer 2, 727–739 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Sennino, B. & McDonald, D. M. Controlling escape from angiogenesis inhibitors. Nat. Rev. Cancer 12, 699–709 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kleinman, H. K. & Martin, G. R. Matrigel: basement membrane matrix with biological activity. Semin. Cancer Biol. 15, 378–386 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Xu, C. et al. Feeder-free growth of undifferentiated human embryonic stem cells. Nat. Biotechnol. 19, 971–974 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Villa-Diaz, L. G., Ross, A. M., Lahann, J. & Krebsbach, P. H. Concise review: the evolution of human pluripotent stem cell culture: from feeder cells to synthetic coatings. Stem Cells 31, 1–7 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hughes, C., Postovit, L. & Lajoie, G. Matrigel: a complex protein mixture required for optimal growth of cell culture. Proteomics 10, 1886–1890 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Wood, J. A., Liliensiek, S. J., Russell, P., Nealey, P. F. & Murphy, C. J. Biophysical cueing and vascular endothelial cell behavior. Materials 3, 1620–1639 (2010).

    Article  CAS  PubMed Central  Google Scholar 

  15. Vukicevic, S. et al. Identification of multiple active growth factors in basement membrane Matrigel suggests caution in interpretation of cellular activity related to extracellular matrix components. Exp. Cell Res. 202, 1–8 (1992).

    Article  CAS  PubMed  Google Scholar 

  16. Stein, C. A., Larocca, R. V., Thomas, R., Mcatee, N. & Myers, C. E. Suramin—an anticancer drug with a unique mechanism of action. J. Clin. Oncol. 7, 499–508 (1989).

    Article  CAS  PubMed  Google Scholar 

  17. Prigozhina, N. L., Heisel, A. J., Seldeen, J. R., Cosford, N. D. & Price, J. H. Amphiphilic suramin dissolves Matrigel, causing an ‘inhibition’ artefact within in vitro angiogenesis assays. Int. J. Exp. Pathol. 94, 412–417 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Murphy, W. L., McDevitt, T. C. & Engler, A. J. Materials as stem cell regulators. Nat. Mater. 13, 547–557 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Murrow, L. M., Weber, R. J. & Gartner, Z. J. Dissecting the stem cell niche with organoid models: an engineering-based approach. Development 144, 998–1007 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cruz-Acuna, R. & Garcia, A. J. Synthetic hydrogels mimicking basement membrane matrices to promote cell-matrix interactions. Matrix Biol. 57–58, 324–333 (2017).

    Article  PubMed  CAS  Google Scholar 

  21. Ranga, A. et al. Neural tube morphogenesis in synthetic 3D microenvironments. Proc. Natl Acad. Sci. USA 113, E6831–E6839 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Caiazzo, M. et al. Defined three-dimensional microenvironments boost induction of pluripotency. Nat. Mater. 15, 344–352 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. Gjorevski, N. et al. Designer matrices for intestinal stem cell and organoid culture. Nature 539, 560–564 (2016).

    Article  CAS  PubMed  Google Scholar 

  24. Enemchukwu, N. O. et al. Synthetic matrices reveal contributions of ECM biophysical and biochemical properties to epithelial morphogenesis. J. Cell. Biol. 212, 113–124 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Huebsch, N. et al. Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate. Nat. Mater. 9, 518–526 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kloxin, A. M., Kasko, A. M., Salinas, C. N. & Anseth, K. S. Photodegradable hydrogels for dynamic tuning of physical and chemical properties. Science 324, 59–63 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Khetan, S. et al. Degradation-mediated cellular traction directs stem cell fate in covalently crosslinked three-dimensional hydrogels. Nat. Mater. 12, 458–465 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fisher, O. Z., Khademhosseini, A., Langer, R. & Peppas, N. A. Bioinspired materials for controlling stem cell fate. Acc. Chem. Res. 43, 419–428 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ranga, A. et al. 3D niche microarrays for systems-level analyses of cell fate. Nat. Commun. 5, 4324 (2014).

    Article  CAS  PubMed  Google Scholar 

  30. Singh, S. P. et al. A synthetic modular approach for modeling the role of the 3D microenvironment in tumor progression. Sci. Rep. 5, 17814 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gill, B. J. et al. A synthetic matrix with independently tunable biochemistry and mechanical properties to study epithelial morphogenesis and EMT in a lung adenocarcinoma model. Cancer Res. 72, 6013–6023 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Beck, J. N., Singh, A., Rothenberg, A. R., Elisseeff, J. H. & Ewald, A. J. The independent roles of mechanical, structural and adhesion characteristics of 3D hydrogels on the regulation of cancer invasion and dissemination. Biomaterials 34, 9486–9495 (2013).

    Article  CAS  PubMed  Google Scholar 

  33. Raza, A., Ki, C. S. & Lin, C. C. The influence of matrix properties on growth and morphogenesis of human pancreatic ductal epithelial cells in 3D. Biomaterials 34, 5117–5127 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ruoslahti, E. RGD and other recognition sequences for integrins. Annu. Rev. Cell. Dev. Biol. 12, 697–715 (1996).

    Article  CAS  PubMed  Google Scholar 

  35. Nagase, H. & Fields, G. B. Human matrix metalloproteinase specificity studies using collagen sequence-based synthetic peptides. Biopolymers 40, 399–416 (1996).

    Article  CAS  PubMed  Google Scholar 

  36. West, J. L. & Hubbell, J. A. Polymeric biomaterials with degradation sites for proteases involved in cell migration. Macromolecules 32, 241–244 (1999).

    Article  CAS  Google Scholar 

  37. Morgan, C. R., Magnotta, F. & Ketley, A. D. Thiol/ene photocurable polymers. J. Polym. Sci. 15, 627–645 (1977).

    CAS  Google Scholar 

  38. Belair, D. G. & Murphy, W. L. Specific VEGF sequestering to biomaterials: influence of serum stability. Acta Biomater. 9, 8823–8831 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Belair, D. G. et al. Human vascular tissue models formed from human induced pluripotent stem cell derived endothelial cells. Stem Cell Rev. 11, 511–525 (2015).

    Article  CAS  PubMed Central  Google Scholar 

  40. Zhang, J. H., Chung, T. D. & Oldenburg, K. R. A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J. Biomol. Screen. 4, 67–73 (1999).

    Article  CAS  PubMed  Google Scholar 

  41. Kleinstreuer, N. C. et al. Environmental impact on vascular development predicted by high-throughput screening. Environ. Health Perspect. 119, 1596–1603 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. El-Masri, H. et al. Integration of life-stage physiologically based pharmacokinetic models with adverse outcome pathways and environmental exposure models to screen for environmental hazards. Toxicol. Sci. 152, 230–243 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Knudsen, T. B. et al. Activity profiles of 309 ToxCast™ chemicals evaluated across 292 biochemical targets. Toxicology 282, 1–15 (2011).

    Article  CAS  PubMed  Google Scholar 

  44. Sipes, N. S. et al. Profiling 976 ToxCast chemicals across 331 enzymatic and receptor signaling assays. Chem. Res. Toxicol. 26, 878–895 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Houck, K. A. et al. Profiling bioactivity of the ToxCast chemical library using BioMAP primary human cell systems. J. Biomol. Screen. 14, 1054–1066 (2009).

    Article  CAS  PubMed  Google Scholar 

  46. Belair, D. G., Schwartz, M. P., Knudsen, T. & Murphy, W. L. Human iPSC-derived endothelial cell sprouting assay in synthetic hydrogel arrays. Acta Biomater. 39, 12–24 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tal, T. et al. Screening for chemical vascular disruptors in zebrafish to evaluate a predictive model for developmental vascular toxicity. Reprod. Toxicol. 70, 70–81 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Fawcett, T. An introduction to ROC analysis. Pattern Recogn. Lett. 27, 861–874 (2006).

    Article  Google Scholar 

  49. Brodersen, K. H., Cheng Soon, O., Stephan, K. E. & Buhmann, J. M. The balanced accuracy and its posterior distribution. In 20th International Conference on Pattern Recognition 3121–3124 (IEEE, 2010).

  50. Latham, A. M. et al. Indolinones and anilinophthalazines differentially target VEGF-A- and basic fibroblast growth factor-mediated responses in primary human endothelial cells. Br. J. Pharmacol. 165, 245–259 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Brossa, A. et al. Sunitinib but not VEGF blockade inhibits cancer stem cell endothelial differentiation. Oncotarget 6, 11295–11309 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Friis, T., Engel, A. M., Bendiksen, C. D., Larsen, L. S. & Houen, G. Influence of levamisole and other angiogenesis inhibitors on angiogenesis and endothelial cell morphology in vitro. Cancers (Basel) 5, 762–785 (2013).

    Google Scholar 

  53. Wood, J. M. et al. PTK787/ZK 222584, a novel and potent inhibitor of vascular endothelial growth factor receptor tyrosine kinases, impairs vascular endothelial growth factor-induced responses and tumor growth after oral administration. Cancer Res. 60, 2178–2189 (2000).

    CAS  PubMed  Google Scholar 

  54. Donovan, D., Brown, N. J., Bishop, E. T. & Lewis, C. E. Comparison of three in vitro human ‘angiogenesis’ assays with capillaries formed in vivo. Angiogenesis 4, 113–121 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. Francescone, R. A. III, Faibish, M. & Shao, R. A Matrigel-based tube formation assay to assess the vasculogenic activity of tumor cells. J. Vis. Exp. 7, 3040 (2011).

    Google Scholar 

  56. Song, J., Rolfe, B. E., Hayward, I. P., Campbell, G. R. & Campbell, J. H. Reorganization of structural proteins in vascular smooth muscle cells grown in collagen gel and basement membrane matrices (Matrigel): a comparison with their in situ counterparts. J. Struct. Biol. 133, 43–54 (2001).

    Article  CAS  PubMed  Google Scholar 

  57. Vernon, R., Angello, J., Iruelaarispe, M., Lane, T. & Sage, E. Reorganization of basement-membrane matrices by cellular traction promotes the formation of cellular networks in vitro. Lab. Invest. 66, 536–547 (1992).

    CAS  PubMed  Google Scholar 

  58. Vernon, R. B. & Sage, E. H. Between molecules and morphology. Extracellular matrix and creation of vascular form. Am. J. Pathol. 147, 873–883 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. De Smet, F., Segura, I., De Bock, K., Hohensinner, P. & Carmeliet, P. Mechanisms of vessel branching filopodia on endothelial tip cells lead the way. Arterioscler. Thromb. Vasc. Biol. 29, 639–649 (2009).

    Article  CAS  PubMed  Google Scholar 

  60. Maniotis, A. J. et al. Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry. Am. J. Pathol. 155, 739–752 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Saunders, R. & Hammer, D. Assembly of human umbilical vein endothelial cells on compliant hydrogels. Cell. Mol. Bioeng. 3, 60–67 (2010).

    Article  CAS  PubMed  Google Scholar 

  62. Rundhaug, J. E. Matrix metalloproteinases and angiogenesis. J. Cell. Mol. Med. 9, 267–285 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Rashid, A., Kuppa, A., Kunwar, A. & Panda, D. Thalidomide (5HPP-33) suppresses microtubule dynamics and depolymerizes the microtubule network by binding at the vinblastine binding site on tubulin. Biochemistry 54, 2149–2159 (2015).

    Article  CAS  PubMed  Google Scholar 

  64. Satchi-Fainaro, R. et al. Inhibition of vessel permeability by TNP-470 and its polymer conjugate, caplostatin. Cancer Cell 7, 251–261 (2005).

    Article  CAS  PubMed  Google Scholar 

  65. Niwano, M. et al. Inhibition of tumor growth and microvascular angiogenesis by the potent angiogenesis inhibitor, TNP-470, in rats. Surg. Today 28, 915–922 (1998).

    Article  CAS  PubMed  Google Scholar 

  66. Niwa, H., Miyazaki, J. & Smith, A. G. Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat. Genet. 24, 372–376 (2000).

    Article  CAS  PubMed  Google Scholar 

  67. Chambers, I. et al. Functional expression cloning of NANOG, a pluripotency sustaining factor in embryonic stem cells. Cell 113, 643–655 (2003).

    Article  CAS  PubMed  Google Scholar 

  68. Radzisheuskaya, A. & Silva, J. C. Do all roads lead to Oct4? The emerging concepts of induced pluripotency. Trends Cell. Biol. 24, 275–284 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Musah, S. et al. Glycosaminoglycan-binding hydrogels enable mechanical control of human pluripotent stem cell self-renewal. ACS Nano 6, 10168–10177 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zhang, R. et al. A thermoresponsive and chemically defined hydrogel for long-term culture of human embryonic stem cells. Nat. Commun. 4, 1335 (2013).

    Article  PubMed  CAS  Google Scholar 

  71. Gharechahi, J. et al. The effect of Rho-associated kinase inhibition on the proteome pattern of dissociated human embryonic stem cells. Mol. Biosyst. 10, 640–652 (2014).

    Article  CAS  PubMed  Google Scholar 

  72. Nguyen, E. H., Zanotelli, M. R., Schwartz, M. P. & Murphy, W. L. Differential effects of cell adhesion, modulus and VEGFR-2 inhibition on capillary network formation in synthetic hydrogel arrays. Biomaterials 35, 2149–2161 (2014).

    Article  CAS  PubMed  Google Scholar 

  73. Schwartz, M. P. et al. Human pluripotent stem cell-derived neural constructs for predicting neural toxicity. Proc. Natl Acad. Sci. USA 112, 12516–12521 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Schukur, L., Zorlutuna, P., Cha, J. M., Bae, H. & Khademhosseini, A. Directed differentiation of size-controlled embryoid bodies towards endothelial and cardiac lineages in RGD-modified poly(ethylene glycol) hydrogels. Adv. Healthc. Mater. 2, 195–205 (2013).

    Article  CAS  PubMed  Google Scholar 

  75. Hansen, T. D. et al. Biomaterial arrays with defined adhesion ligand densities and matrix stiffness identify distinct phenotypes for tumorigenic and nontumorigenic human mesenchymal cell types. Biomater. Sci. 2, 745–756 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Fairbanks, B. D. et al. A versatile synthetic extracellular matrix mimic via thiol-norbornene photopolymerization. Adv. Mater. 21, 5005–5010 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Le, N. N. T., Zorn, S., Schmitt, S. K., Gopalan, P. & Murphy, W. L. Hydrogel arrays formed via differential wettability patterning enable combinatorial screening of stem cell behavior. Acta Biomater. 34, 93–103 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Hojjat-Farsangi, M. Small-molecule inhibitors of the receptor tyrosine kinases: promising tools for targeted cancer therapies. Int. J. Mol. Sci. 15, 13768–13801 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Fong, T. A. T. et al. SU5416 is a potent and selective inhibitor of the vascular endothelial growth factor receptor (Flk-1/KDR) that inhibits tyrosine kinase catalysis, tumor vascularization, and growth of multiple tumor types. Cancer Res. 59, 99–106 (1999).

    CAS  PubMed  Google Scholar 

  80. Maynard, S. E. et al. Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfimction, hypertension, and proteinuria in preeclampsia. J. Clin. Invest. 111, 649–658 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Clark, D. E. et al. A vascular endothelial growth factor antagonist is produced by the human placenta and released into the maternal circulation. Biol. Reprod. 59, 1540–1548 (1998).

    Article  CAS  PubMed  Google Scholar 

  82. Belgore, F. M., Blann, A. D. & Lip, G. Y. H. sFlt-1, a potential antagonist for exogenous VEGF. Circulation 102, E108–E108 (2000).

    Article  CAS  PubMed  Google Scholar 

  83. Hashizume, H. et al. Complementary actions of inhibitors of angiopoietin-2 and VEGF on tumor angiogenesis and growth. Cancer Res. 70, 2213–2223 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Rosenberg, S. A. Interleukin 2 for patients with renal cancer. Nat. Clin. Pract. Oncol. 4, 497 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Cao, Y. & Langer, R. Optimizing the delivery of cancer drugs that block angiogenesis. Sci. Transl. Med. 2, 15ps13 (2010).

    Article  CAS  Google Scholar 

  86. Richard, A. M. et al. ToxCast chemical landscape: paving the road to 21st century toxicology. Chem. Res. Toxicol. 29, 1225–1251 (2016).

    Article  CAS  PubMed  Google Scholar 

  87. Nguyen, E. H. et al. Dataset for versatile synthetic alternatives to Matrigel for vascular toxicity screening and stem cell expansion. figsharehttp://dx.doi.org/10.6084/m9.figshare.c.3791386 (2017).

Download references

Acknowledgements

The authors acknowledge funding from the National Institutes of Health (NIH; R01HL093282-01A1, R21EB016381-01, 1UH2TR000506-01, T32HL007889, T32HL07936, R01EB10039, R24 EY022883, R01 EY026078, P30 EY016665, P30 CA 014520 and 5 P30 CA 014520-01), the Biotechnology Training Program (NIGMS5T32GM08349), the National Science Foundation (GE-0718123), the University of Wisconsin-Madison Graduate Engineering Research Scholars program, the Environmental Protection Agency (STAR grant no. 83573701), the Chemical Safety for Sustainability Research Program, the Office of Research and Development, the Virtual Tissue Models Project and the National Center for Computational Biology, the University of Wisconsin-Madison Molecular and Environmental Toxicity Center Training Program (NIH T32 ES007015), the Gates Millennium Scholars Program and the Retina Research Foundation, and an unrestricted departmental award from Research to Prevent Blindness. N.S. was a recipient of the Research to Prevent Blindness Stein Innovation Award. Mechanical testing data were obtained using the Ares LS2 rheometer at the University of Wisconsin-Madison Soft Materials Laboratory. This study made use of the National Magnetic Resonance Facility at Madison, which is supported by NIH grant P41GM103399 (NIGMS; old number: P41RR002301). Equipment was purchased with funds from the University of Wisconsin-Madison, the NIH (P41GM103399, S10RR02781, S10RR08438, S10RR023438, S10RR025062 and S10RR029220), the NSF (DMB-8415048, OIA-9977486 and BIR-9214394) and the United States Department of Agriculture. The authors acknowledge M. L. Dombroe for assistance with the HUVEC cultures and the laboratory of O. Mezu-Ndubuisi for providing mice for use in the aortic ring sprouting assays. The US Environmental Protection Agency (EPA), through its Office of Research and Development, funded and managed part of the research described here. The views expressed in this paper are those of the authors and do not necessarily reflect the views or policies of the EPA.

Author information

Authors and Affiliations

Authors

Contributions

E.H.N., W.T.D., C.S.L., M.F., D.G.B., T.B.K. and G.E.A. contributed to the conception and design of the endothelial-network experiments. E.H.N., W.T.D., M.F., M.P.S., C.S.L. and M.A.S. contributed to the execution of the endothelial-network experiments. E.H.N., W.T.D., M.F., M.P.S., C.S.L., D.G.B., M.A.S. and T.B.K. contributed to the analysis and figure preparation of the endothelial-network experiments. N.N.T.L. contributed to the conception, design and execution of the hESC experiments. E.H.N. and N.N.T.L. contributed to the analysis and figure preparation of the hESC experiments. E.H.N. and C.S.L. contributed to the conception, design and execution of the hydrogel characterization experiments. E.H.N., W.T.D., T.B.K. and W.L.M. drafted the manuscript. N.S. and W.L.M. supervised the work throughout data collection and manuscript preparation. W.L.M. approved the final version of the manuscript.

Corresponding author

Correspondence to William L. Murphy.

Ethics declarations

Competing interests

C.S.L. is an employee and stockholder of Stem Pharm. W.L.M. is a founder and stockholder of Stem Pharm.

Supplementary information

Supplementary Information

Supplementary discussion, results, methods, figures and references. (PDF 3663 kb)

Supplementary Video 1

Endothelial-network formation by HUVECs over the course of 24 hours after seeding onto PEG hydrogels. (WMV 9353 kb)

Supplementary Video 2

Endothelial-network formation by HUVECs over the course of 24 hours after seeding onto Matrigel. (WMV 6650 kb)

Supplementary Video 3

Endothelial-network formation by iPSC-ECs over the course of 24 hours after seeding onto PEG hydrogels. (WMV 12369 kb)

Supplementary Video 4

Formation process of the thin hydrogel array. (MP4 25323 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, E., Daly, W., Le, N. et al. Versatile synthetic alternatives to Matrigel for vascular toxicity screening and stem cell expansion. Nat Biomed Eng 1, 0096 (2017). https://doi.org/10.1038/s41551-017-0096

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41551-017-0096

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research