Biophysical and biomolecular determination of cellular age in humans


Ageing research has focused either on assessing organ- and tissue-based changes, such as lung capacity and cardiac function, or on changes at the molecular scale such as gene expression, epigenetic modifications and metabolism. Here, by using a cohort of 32 samples of primary dermal fibroblasts collected from individuals between 2 and 96 years of age, we show that the degradation of functional cellular biophysical features—including cell mechanics, traction strength, morphology and migratory potential—and associated descriptors of cellular heterogeneity predict cellular age with higher accuracy than conventional biomolecular markers. We also demonstrate the use of high-throughput single-cell technologies, together with a deterministic model based on cellular features, to compute the cellular age of apparently healthy males and females, and to explore these relationships in cells from individuals with Werner syndrome and Hutchinson–Gilford progeria syndrome, two rare genetic conditions that result in phenotypes that show aspects of premature ageing. Our findings suggest that the quantification of cellular age may be used to stratify individuals on the basis of cellular phenotypes and serve as a biological proxy of healthspan.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Changes in cell biophysics: a hallmark of ageing.
Figure 2: Comprehensive biomolecular assessment of age-dependent cellular phenotypes.
Figure 3: Cellular heterogeneity: a hallmark of ageing.
Figure 4: Univariate and bivariate age-associated parameters provide a reliable prediction of the functional age index of donors on the basis of cellular features.
Figure 5: Cellular biological age prediction on the basis of morphological features.


  1. 1

    Lopez-Otin, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. The hallmarks of aging. Cell 153, 1194–1217 (2013).

    CAS  Article  Google Scholar 

  2. 2

    Belsky, D. W. et al. Quantification of biological aging in young adults. Proc. Natl Acad. Sci. USA 112, E4104–E4110 (2015).

    CAS  Article  Google Scholar 

  3. 3

    Smith, B. D., Smith, G. L., Hurria, A., Hortobagyi, G. N. & Buchholz, T. A. Future of cancer incidence in the United States: burdens upon an aging, changing nation. J. Clin. Oncol. 27, 2758–2765 (2009).

    Article  Google Scholar 

  4. 4

    Kennedy, B. K. et al. Geroscience: linking aging to chronic disease. Cell 159, 708–712, (2014).

    Article  Google Scholar 

  5. 5

    Bocklandt, S. et al. Epigenetic predictor of age. PLoS ONE 6, e14821 (2011).

    CAS  Article  Google Scholar 

  6. 6

    Horvath, S. DNA methylation age of human tissues and cell types. Genome Biol. 14, R115 (2013).

    Article  Google Scholar 

  7. 7

    Wirtz, D., Konstantopoulos, K. & Searson, P. C. The physics of cancer: the role of physical interactions and mechanical forces in metastasis. Nat. Rev. Cancer 11, 512–522 (2011).

    CAS  Article  Google Scholar 

  8. 8

    Phillip, J. M., Aifuwa, I., Walston, J. & Wirtz, D. The mechanobiology of aging. Annu. Rev. Biomed. Eng. 17, 113–141 (2015).

    CAS  Article  Google Scholar 

  9. 9

    Rodier, F. & Campisi, J. Four faces of cellular senescence. J. Cell Biol. 192, 547–556 (2011).

    CAS  Article  Google Scholar 

  10. 10

    Baker, D. J. et al. Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature 479, 232–236 (2011).

    CAS  Article  Google Scholar 

  11. 11

    Wirtz, D. Particle-tracking microrheology of living cells: principles and applications. Annu. Rev. Biophys. 38, 301–326 (2009).

    CAS  Article  Google Scholar 

  12. 12

    Ingber, D. E. Mechanobiology and diseases of mechanotransduction. Ann. Med. 35, 564–577 (2003).

    Article  Google Scholar 

  13. 13

    Makale, M. Cellular mechanobiology and cancer metastasis. Birth Defects Res. C Embryo Today 81, 329–343 (2007).

    CAS  Article  Google Scholar 

  14. 14

    Altschuler, S. J. & Wu, L. F. Cellular heterogeneity: do differences make a difference? Cell 141, 559–563 (2010).

    CAS  Article  Google Scholar 

  15. 15

    Darling, E. M. & Di Carlo, D. High-throughput assessment of cellular mechanical properties. Annu. Rev. Biomed. Eng. 17, 35–62 (2015).

    CAS  Article  Google Scholar 

  16. 16

    Starodubtseva, M. N. Mechanical properties of cells and ageing. Ageing Res. Rev. 10, 16–25 (2011).

    Article  Google Scholar 

  17. 17

    Martin, P. Wound healing—aiming for perfect skin regeneration. Science 276, 75–81 (1997).

    CAS  Article  Google Scholar 

  18. 18

    Fraley, S. I. et al. A distinctive role for focal adhesion proteins in three-dimensional cell motility. Nat. Cell Biol. 12, 598–604 (2010).

    CAS  Article  Google Scholar 

  19. 19

    Wu, P. H., Giri, A. & Wirtz, D. Statistical analysis of cell migration in 3D using the anisotropic persistent random walk model. Nat. Protoc. 10, 517–527 (2015).

    CAS  Article  Google Scholar 

  20. 20

    Wu, P. H., Giri, A., Sun, S. X. & Wirtz, D. Three-dimensional cell migration does not follow a random walk. Proc. Natl Acad. Sci. USA 111, 3949–3954 (2014).

    CAS  Article  Google Scholar 

  21. 21

    Munevar, S., Wang, Y. & Dembo, M. Traction force microscopy of migrating normal and H-ras transformed 3T3 fibroblasts. Biophys. J. 80, 1744–1757 (2001).

    CAS  Article  Google Scholar 

  22. 22

    Aifuwa, I. et al. Senescent stromal cells induce cancer cell migration via inhibition of RhoA/ROCK/myosin-based cell contractility. Oncotarget 6, 30516–30531 (2015).

    Article  Google Scholar 

  23. 23

    Aratyn-Schaus, Y., Oakes, P. W., Stricker, J., Winter, S. P. & Gardel, M. L. Preparation of complaint matrices for quantifying cellular contraction. J. Vis. Exp. e2173 (2010).

  24. 24

    Stroka, K. M. et al. Loss of giant obscurins alters breast epithelial cell mechanosensing of matrix stiffness. Oncotarget (2016).

  25. 25

    Kim, D. H. & Wirtz, D. Cytoskeletal tension induces the polarized architecture of the nucleus. Biomaterials 48, 161–172 (2015).

    CAS  Article  Google Scholar 

  26. 26

    Hale, C. M. et al. SMRT analysis of MTOC and nuclear positioning reveals the role of EB1 and LIC1 in single-cell polarization. J. Cell Sci. 124, 4267–4285 (2011).

    CAS  Article  Google Scholar 

  27. 27

    Wu, P. H. et al. High-throughput ballistic injection nanorheology to measure cell mechanics. Nat. Protoc. 7, 155–170 (2012).

    CAS  Article  Google Scholar 

  28. 28

    Lee, J. S. et al. Nuclear lamin A/C deficiency induces defects in cell mechanics, polarization, and migration. Biophys. J. 93, 2542–2552 (2007).

    CAS  Article  Google Scholar 

  29. 29

    Lee, J. S. et al. Ballistic intracellular nanorheology reveals ROCK-hard cytoplasmic stiffening response to fluid flow. J. Cell Sci. 119, 1760–1768 (2006).

    CAS  Article  Google Scholar 

  30. 30

    Tseng, Y. et al. How actin crosslinking and bundling proteins cooperate to generate an enhanced cell mechanical response. Biochem. Biophys. Res. Commun. 334, 183–192 (2005).

    CAS  Article  Google Scholar 

  31. 31

    Chen, W. C. et al. Functional interplay between the cell cycle and cell phenotypes. Integr. Biol. (Camb.) 5, 523–534 (2013).

    CAS  Article  Google Scholar 

  32. 32

    Wu, P. H. et al. Evolution of cellular morpho-phenotypes in cancer metastasis. Sci. Rep. 5, 18437 (2015).

    CAS  Article  Google Scholar 

  33. 33

    Guo, Q. Y. et al. Modulation of keratocyte phenotype by collagen fibril nanoarchitecture in membranes for corneal repair. Biomaterials 34, 9365–9372 (2013).

    CAS  Article  Google Scholar 

  34. 34

    Shah, M. Y. et al. MMSET/WHSC1 enhances DNA damage repair leading to an increase in resistance to chemotherapeutic agents. Oncogene 35, 5905–5915 (2016).

    CAS  Article  Google Scholar 

  35. 35

    Yong, K. M. A. et al. Morphological effects on expression of growth differentiation factor 15 (GDF15), a marker of metastasis. J. Cell Physiol. 229, 362–373 (2014).

    Article  Google Scholar 

  36. 36

    Hecht, V. C. et al. Biophysical changes reduce energetic demand in growth factor-deprived lymphocytes. J. Cell Biol. 212, 439–447 (2016).

    CAS  Article  Google Scholar 

  37. 37

    Hayflick, L. Recent advances in the cell biology of aging. Mech. Ageing Dev. 14, 59–79 (1980).

    CAS  Article  Google Scholar 

  38. 38

    Bratic, A. & Larsson, N. G. The role of mitochondria in aging. J. Clin. Invest. 123, 951–957 (2013).

    CAS  Article  Google Scholar 

  39. 39

    Green, D. R., Galluzzi, L. & Kroemer, G. Mitochondria and the autophagy-inflammation-cell death axis in organismal aging. Science 333, 1109–1112 (2011).

    CAS  Article  Google Scholar 

  40. 40

    Miyoshi, N., Oubrahim, H., Chock, P. B. & Stadtman, E. R. Age-dependent cell death and the role of ATP in hydrogen peroxide-induced apoptosis and necrosis. Proc. Natl Acad. Sci. USA 103, 1727–1731 (2006).

    CAS  Article  Google Scholar 

  41. 41

    Smart, N. et al. IL-6 induces PI 3-kinase and nitric oxide-dependent protection and preserves mitochondrial function in cardiomyocytes. Cardiovasc. Res. 69, 164–177 (2006).

    CAS  Article  Google Scholar 

  42. 42

    Lu, Y. et al. High-throughput secretomic analysis of single cells to assess functional cellular heterogeneity. Anal. Chem. 85, 2548–2556 (2013).

    CAS  Article  Google Scholar 

  43. 43

    Waldera Lupa, D. M. et al. Characterization of skin aging-associated secreted proteins (SAASP) produced by dermal fibroblasts isolated from intrinsically aged human skin. J. Invest. Dermatol. 135, 1954–1968 (2015).

    CAS  Article  Google Scholar 

  44. 44

    Chambliss, A. B., Wu, P. H., Chen, W. C., Sun, S. X. & Wirtz, D. Simultaneously defining cell phenotypes, cell cycle, and chromatin modifications at single-cell resolution. FASEB J. 27, 2667–2676 (2013).

    CAS  Article  Google Scholar 

  45. 45

    Wu, P. H. et al. Evolution of cellular morpho-phenotypes in cancer metastasis. Sci. Rep. 5, 18437 (2015).

    CAS  Article  Google Scholar 

  46. 46

    Sedelnikova, O. A. et al. Delayed kinetics of DNA double-strand break processing in normal and pathological aging. Aging Cell 7, 89–100 (2008).

    CAS  Article  Google Scholar 

  47. 47

    Kreiling, J. A. et al. Age-associated increase in heterochromatic marks in murine and primate tissues. Aging Cell 10, 292–304 (2011).

    CAS  Article  Google Scholar 

  48. 48

    Isermann, P. & Lammerding, J. Nuclear mechanics and mechanotransduction in health and disease. Curr. Biol. 23, R1113–R1121 (2013).

    CAS  Article  Google Scholar 

  49. 49

    Kim, D. H., Chambliss, A. B. & Wirtz, D. The multi-faceted role of the actin cap in cellular mechanosensation and mechanotransduction. Soft Matter 9, 5516–5523 (2013).

    CAS  Article  Google Scholar 

  50. 50

    Khatau, S. B. et al. A perinuclear actin cap regulates nuclear shape. Proc. Natl Acad. Sci. USA 106, 19017–19022 (2009).

    CAS  Article  Google Scholar 

  51. 51

    Schulze, C. et al. Stiffening of human skin fibroblasts with age. Clin. Plast. Surg. 39, 9–20 (2012).

    Article  Google Scholar 

  52. 52

    Niepel, M., Spencer, S. L. & Sorger, P. K. Non-genetic cell-to-cell variability and the consequences for pharmacology. Curr. Opin. Chem. Biol. 13, 556–561 (2009).

    CAS  Article  Google Scholar 

  53. 53

    Bahar, R. et al. Increased cell-to-cell variation in gene expression in ageing mouse heart. Nature 441, 1011–1014 (2006).

    CAS  Article  Google Scholar 

  54. 54

    Burch, J. B. et al. Advances in geroscience: impact on healthspan and chronic disease. J. Gerontol. A Biol. Sci. Med. Sci. 69, S1–S3 (2014).

    Article  Google Scholar 

  55. 55

    Espinoza, S. & Walston, J. D. Frailty in older adults: insights and interventions. Cleve. Clin. J. Med. 72, 1105–1112 (2005).

    Article  Google Scholar 

  56. 56

    Blagosklonny, M. V. Why men age faster but reproduce longer than women: mTOR and evolutionary perspectives. Aging 2, 265–273 (2010).

    CAS  Article  Google Scholar 

  57. 57

    Ortman, J. M., Velkoff, V. A. & Hogan, H. An Aging Nation: The Older Population in the United States Current Population Report P25–1140 (US Census Bureau, 2014).

  58. 58

    Waldron, I. Why do women live longer than men? Soc. Sci. Med. 10, 349–362 (1979).

    Article  Google Scholar 

  59. 59

    Waldron, I. What do we know about causes of sex differences in mortality? A review of the literature. Popul. Bull. UN 18, 59–76 (1985).

    Google Scholar 

  60. 60

    Nakamura, E. & Miyao, K. Sex differences in human biological aging. J. Gerontol. A Biol. Sci. Med. Sci. 63, 936–944 (2008).

    Article  Google Scholar 

  61. 61

    Voitenko, V. P. & Tokar, A. V. The assessment of biological age and sex differences of human aging. Exp. Aging Res. 9, 239–244 (1983).

    CAS  Article  Google Scholar 

  62. 62

    Childs, B. G., Durik, M., Baker, D. J. & van Deursen, J. M. Cellular senescence in aging and age-related disease: from mechanisms to therapy. Nat. Med. 21, 1424–1435 (2015).

    CAS  Article  Google Scholar 

  63. 63

    van Deursen, J. M. The role of senescent cells in ageing. Nature 509, 439–446 (2014).

    CAS  Article  Google Scholar 

  64. 64

    Campisi, J. Aging, cellular senescence, and cancer. Annu. Rev. Physiol. 75, 685–705 (2013).

    CAS  Article  Google Scholar 

  65. 65

    Campisi, J. Cellular senescence, cancer and aging. Mol. Biol. Cell. 15, 354a (2004).

    Google Scholar 

  66. 66

    Campisi, J. Cancer, aging and cellular senescence. In Vivo 14, 183–188 (2000).

    CAS  PubMed  Google Scholar 

  67. 67

    Campisi, J., Andersen, J. K., Kapahi, P. & Melov, S. Cellular senescence: a link between cancer and age-related degenerative disease? Semin. Cancer Biol. 21, 354–359 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. 68

    Campisi, J. & di Fagagna, F. D. Cellular senescence: when bad things happen to good cells. Nat. Rev. Mol. Cell Bio. 8, 729–740 (2007).

    CAS  Article  Google Scholar 

  69. 69

    Campisi, J., Kim, S. H., Lim, C. S. & Rubio, M. Cellular senescence, cancer and aging: the telomere connection. Exp. Gerontol. 36, 1619–1637 (2001).

    CAS  Article  Google Scholar 

  70. 70

    Coppe, J. P., Desprez, P. Y., Krtolica, A. & Campisi, J. The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu. Rev. Pathol. Mech. 5, 99–118 (2010).

    CAS  Article  Google Scholar 

  71. 71

    Kafri, R. et al. Dynamics extracted from fixed cells reveal feedback linking cell growth to cell cycle. Nature 494, 480–483 (2013).

    CAS  Article  Google Scholar 

Download references


We acknowledge the financial support for this work by the National Institutes of Health; grant numbers U54CA143868 (D.W.), R01CA174388 (D.W.) and P30AG021334 Johns Hopkins Older Americans Independence Center (J.W.). Special thanks to M. Maggioni, and Q-L. Xue for feedback and discussion with regards to the statistical methodologies employed in this study.

Author information




J.M.P., D.W., J.W. and J.S.H.L. conceived and designed the study. J.M.P., W.W., S.M., J.D. and I.A. performed the experiments. J.M.P., P.-H.W. and D.W. analysed the results. P.-H.W. and J.M.P. developed the analysis software and algorithms. J.C. and R.F. generated and analysed the secretion microchip data. D.W., P.-H.W., D.M.G. and J.W. supervised the study. J.M.P., D.W. and J.W. wrote and edited the manuscript.

Corresponding author

Correspondence to Denis Wirtz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figures, tables and references. (PDF 1443 kb)

Supplementary dataset

Replicative history of the cells, and parameter list and correlations. (XLSX 2520 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Phillip, J., Wu, P., Gilkes, D. et al. Biophysical and biomolecular determination of cellular age in humans. Nat Biomed Eng 1, 0093 (2017).

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing