Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

3D-printed vascular networks direct therapeutic angiogenesis in ischaemia

An Author Correction to this article was published on 06 April 2020

Abstract

Arterial bypass grafts remain the gold standard for the treatment of end-stage ischaemic disease. Yet patients unable to tolerate the cardiovascular stress of arterial surgery or those with unreconstructable disease would benefit from grafts that are able to induce therapeutic angiogenesis. Here, we introduce an approach whereby implantation of 3D-printed grafts containing endothelial-cell-lined lumens induces spontaneous, geometrically guided generation of collateral circulation in ischaemic settings. In rodent models of hind limb ischaemia and myocardial infarction, we demonstrate that the vascular patches rescue perfusion of distal tissues, preventing capillary loss, muscle atrophy and loss of function. Inhibiting anastomoses between the construct and the host’s local capillary beds, or implanting constructs with unpatterned endothelial cells, abrogates reperfusion. Our 3D-printed grafts constitute an efficient and scalable approach to engineer vascular patches that are able to guide rapid therapeutic angiogenesis and perfusion for the treatment of ischaemic diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Fabricated VPs rescue perfusion in hind limb ischaemia.
Figure 2: Host-driven biointegration of grafts drives perfusion of ischaemic limb.
Figure 3: Geometric patterning within VPs impacts perfusion performance.
Figure 4: Fabricated VPs rescue cardiac function after MI in rats.

Similar content being viewed by others

References

  1. Underlying Cause of Death 1999–2013 CDC WONDER Online Database (Centers for Disease Control and Prevention, National Center for Health Statistics, accessed 3 February 2015); https://wonder.cdc.gov/ucd-icd10.html

  2. Deaths, Percent of Total Deaths, and Death Rates for the 15 Leading Causes of Death: United States and Each State, 1999–2014 (Centers for Disease Control and Prevention, National Center for Health Statistics, 2015).

  3. Mozaffarian, D. et al. Heart disease and stroke statistics—2015 update: a report from the American Heart Association. Circulation 131, 29–322 (2015).

    Google Scholar 

  4. Fryar, C. D., Chen, T. C. & Li, X. Prevalence of uncontrolled risk factors for cardiovascular disease: United States, 1999–2010. NCHS Data Brief 103, 1–8 (2012).

    Google Scholar 

  5. Fowkes, F. G. et al. Comparison of global estimates of prevalence and risk factors for peripheral artery disease in 2000 and 2010: a systematic review and analysis. Lancet 382, 1329–1340 (2013).

    PubMed  Google Scholar 

  6. Hall, M. J., DeFrances, C. J., Williams, S. N., Golosinskiy, A. & Schwartzman, A. National Hospital Discharge Survey: 2007 summary. Natl Health Stat. Rep. 29, 1–20 (2010).

    Google Scholar 

  7. Conte, M. S. Bypass versus angioplasty in severe ischaemia of the leg (BASIL) and the (hoped for) dawn of evidence-based treatment for advanced limb ischaemia. J. Vasc. Surg. 51, 69S–75S (2010).

    PubMed  Google Scholar 

  8. Salacinski, H. J. et al. The mechanical behavior of vascular grafts: a review. J. Biomater. Appl. 15, 241–278 (2001).

    CAS  PubMed  Google Scholar 

  9. Slovut, D. P. & Lipsitz, E. C. Surgical technique and peripheral artery disease. Circulation 126, 1127–1138 (2012).

    PubMed  Google Scholar 

  10. Kakkar, A. M. & Abbott, J. D. Percutaneous versus surgical management of lower extremity peripheral artery disease. Curr. Atheroscler. Rep. 17, 479 (2015).

    PubMed  Google Scholar 

  11. Kappetein, A. P., Van Mieghem, N. M. & Head, S. J. Revascularization options: coronary artery bypass surgery and percutaneous coronary intervention. Cardiol. Clin. 32, 457–461 (2014).

    PubMed  Google Scholar 

  12. L’Heureux, N. et al. Human tissue-engineered blood vessels for adult arterial revascularization. Nat. Med. 12, 361–365 (2006).

    PubMed  PubMed Central  Google Scholar 

  13. Dahl, S. L. et al. Readily available tissue-engineered vascular grafts. Sci. Transl. Med. 3, 68ra9 (2011).

    PubMed  Google Scholar 

  14. Quint, C. et al. Decellularized tissue-engineered blood vessel as an arterial conduit. Proc. Natl Acad. Sci. USA 108, 9214–9219 (2011).

    CAS  PubMed  Google Scholar 

  15. Henry, T. D. et al. The VIVA trial: vascular endothelial growth factor in ischaemia for vascular angiogenesis. Circulation 107, 1359–1365 (2003).

    CAS  PubMed  Google Scholar 

  16. Simons, M. et al. Pharmacological treatment of coronary artery disease with recombinant fibroblast growth factor-2: double-blind, randomized, controlled clinical trial. Circulation 105, 788–793 (2002).

    CAS  PubMed  Google Scholar 

  17. Giacca, M. & Zacchigna, S. VEGF gene therapy: therapeutic angiogenesis in the clinic and beyond. Gene Ther. 19, 622–629 (2012).

    CAS  PubMed  Google Scholar 

  18. Ferrara, N. The role of vascular endothelial growth factor in pathological angiogenesis. Breast Cancer Res. Treat. 36, 127–137 (1995).

    CAS  PubMed  Google Scholar 

  19. Peters, M. C., Polverini, P. J. & Mooney, D. J. Engineering vascular networks in porous polymer matrices. J. Biomed. Mater. Res. 60, 668–678 (2002).

    CAS  PubMed  Google Scholar 

  20. Ehrbar, M. et al. Cell-demanded liberation of VEGF121 from fibrin implants induces local and controlled blood vessel growth. Circ. Res. 94, 1124–1132 (2004).

    CAS  PubMed  Google Scholar 

  21. Phelps, E. A., Landázuri, N., Thulé, P. M., Taylor, W. R. & García, A. J. Bioartificial matrices for therapeutic vascularization. Proc. Natl Acad. Sci. USA 107, 3323–3328 (2010).

    CAS  PubMed  Google Scholar 

  22. Sadr, N. et al. SAM-based cell transfer to photopatterned hydrogels for microengineering vascular-like structures. Biomaterials 32, 7479–7490 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Gupta,, R., Tongers, J. & Losordo,, D. W. Human studies of angiogenic gene therapy. Circ. Res. 105, 724–736 (2009).

    CAS  Google Scholar 

  24. Koike, N. et al. Tissue engineering: creation of long-lasting blood vessels. Nature 428, 138–139 (2004).

    CAS  PubMed  Google Scholar 

  25. Au, P., Tam, J., Fukumura, D. & Jain, R. K. Bone marrow-derived mesenchymal stem cells facilitate engineering of long-lasting functional vasculature. Blood 111, 4551–4558 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Kusuma, S. et al. Self-organized vascular networks from human pluripotent stem cells in a synthetic matrix. Proc. Natl Acad. Sci. USA 110, 12601–12606 (2013).

    CAS  PubMed  Google Scholar 

  27. Levenberg, S. et al. Engineering vascularized skeletal muscle tissue. Nat. Biotechnol. 23, 879–884 (2005).

    CAS  PubMed  Google Scholar 

  28. Baranski, J. D. et al. Geometric control of vascular networks to enhance engineered tissue integration and function. Proc. Natl Acad. Sci. USA 110, 7586–7591 (2013).

    CAS  PubMed  Google Scholar 

  29. Miller, J. S. et al. Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nat. Mater. 11, 768–774 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Hiesinger, W. et al. Computational protein design to reengineer stromal cell-derived factor-1α generates an effective and translatable angiogenic polypeptide analog. Circulation 124, S18–S26 (2011).

    PubMed  PubMed Central  Google Scholar 

  31. MacArthur, J. W. et al. Mathematically engineered stromal cell-derived factor-1α stem cell cytokine analog enhances mechanical properties of infarcted myocardium. J. Thorac. Cardiov. Sur. 145, 278–284 (2013).

    CAS  Google Scholar 

  32. MacArthur, J. W. et al. Sustained release of engineered stromal cell-derived factor 1-α from injectable hydrogels effectively recruits endothelial progenitor cells and preserves ventricular function after myocardial infarction. Circulation 128, S79–S86 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Shudo, Y. et al. A tissue-engineered chondrocyte cell sheet induces extracellular matrix modification to enhance ventricular biomechanics and attenuate myocardial stiffness in ischaemic cardiomyopathy. Tissue Eng. Part A 19–20, 2515–2525 (2015).

    Google Scholar 

  34. Rodell, C. B. et al. Shear-thinning supramolecular hydrogels with secondary autonomous covalent crosslinking to modulate viscoelastic properties in vivo. Adv. Funct. Mater. 25, 636–644 (2015).

    CAS  PubMed  Google Scholar 

  35. Murray, C. D. The physiological principle of minimum work: I. The vascular system and the cost of blood volume. Proc. Natl Acad. Sci. USA 12, 207–214 (1926).

    CAS  PubMed  Google Scholar 

  36. Kassab, G. S. Scaling laws of vascular trees: of form and function. Am. J. Physiol. Heart C 290, H894–H903 (2006).

    CAS  Google Scholar 

  37. Kang, H.-W., Atala, A. & Yoo, J. J. in Essentials of 3D Biofabrication and Translation (eds Atala, A . & Yoo, J. J .) Ch. 10 (Elsevier, 2015).

    Google Scholar 

  38. Visconti, R. P. et al. Towards organ printing: engineering an intra-organ branched vascular tree. Expert Opin. Biol. Ther. 10, 409–420 (2010).

    PubMed  PubMed Central  Google Scholar 

  39. Sydney Gladman, A., Matsumoto, E. A., Nuzzo, R. G., Mahadevan, L. & Lewis, J. A. Biomimetic 4D printing. Nat. Mater. 15, 413–418 (2016).

    CAS  PubMed  Google Scholar 

  40. Moroni, F. & Mirabella, T. Decellularized matrices for cardiovascular tissue engineering. Am. J. Stem Cells 13, 1–20 (2014).

    Google Scholar 

  41. Sooppan, R. et al. In vivo anastomosis and perfusion of a three-dimensionally-printed construct containing microchannel networks. Tissue Eng. Part C 22, 1–7 (2016).

    CAS  Google Scholar 

  42. Jaipersad, A. S., Lip, G. Y., Silverman, S. & Shantsila, E. The role of monocytes in angiogenesis and atherosclerosis. J. Am. Coll. Cardiol. 63, 1–11 (2014).

    CAS  PubMed  Google Scholar 

  43. Waters, R. E., Terjung, R. L., Peters, K. G. & Annex, B. H. Preclinical models of human peripheral arterial occlusive disease: implications for investigation of therapeutic agents. J. Appl. Physiol. 97, 773–780 (2004).

    CAS  PubMed  Google Scholar 

  44. Hall, M. J. et al. National Hospital Discharge Survey: 2007 summary. Natl Health Stat. Report 24, 1–20 (2010).

    Google Scholar 

  45. Norgren, L. et al. Inter-society consensus for the management of peripheral arterial disease (TASC II). J. Vasc. Surg. 45, S5–67 (2007).

    PubMed  Google Scholar 

  46. Belch, J. J. et al. Critical issues in peripheral arterial disease detection and management: a call to action. Arch. Intern. Med. 163, 884–892 (2003).

    PubMed  Google Scholar 

  47. Al Mahameed, A. Peripheral arterial disease. Cleveland Clinic Center for Continuing Educationhttp://www.clevelandclinicmeded.com/medicalpubs/diseasemanagement/cardiology/peripheral-arterial-disease/ (2009).

  48. Hoefer, I. E. et al. Arteriogenesis proceeds via ICAM-1/Mac-1-mediated mechanisms. Circ. Res. 94, 1179–1185 (2004).

    CAS  PubMed  Google Scholar 

  49. Mirabella, T., Cilli, M., Carlone, S., Cancedda, R. & Gentili, C. Amniotic liquid derived stem cells as reservoir of secreted angiogenic factors capable of stimulating neo-arteriogenesis in an ischaemic model. Biomaterials 32, 3689–3699 (2011).

    CAS  PubMed  Google Scholar 

  50. Mirabella, T. et al. Proangiogenic soluble factors from amniotic fluid stem cells mediate the recruitment of endothelial progenitors in a model of ischaemic fasciocutaneous flap. Stem Cells Dev. 21, 2179–2188 (2012).

    CAS  PubMed  Google Scholar 

  51. National Research Council Guide for the Care and Use of Laboratory Animals 8th edn (National Academies, 2011).

Download references

Acknowledgements

We thank J. Eyckmans, R. Chaturvedi and M. Shockley for helpful discussions. This work was supported in part by grants from the National Institutes of Health (NIH; EB00262, EB08396, HL118851), the Biological Design Center of Boston University and the BU-Coulter Foundation Translational Partnership Program. D.C. was supported by the National Science Foundation. C.K.O. was supported by the American Heart Association Grant-in-Aid (16GRNT27090006). Y.J.W. was supported by NIH grant 1R01 (HL089315-01). J.W.M. was supported by the American Heart Association (12POST11620024).

Author information

Authors and Affiliations

Authors

Contributions

T.M., J.W.M., D.C., C.K.O., Y.J.W., M.T.Y. and C.S.C. conceived, developed and mentored the project. T.M., J.W.M., D.C. and M.T.Y. performed the experiments. T.M. and J.W.M, analysed the data. T.M. and C.S.C. wrote the manuscript.

Corresponding author

Correspondence to C. S. Chen.

Ethics declarations

Competing interests

C.S.C. is a cofounder of, and owns equity in, Innolign Biomedical, a company that is developing tissue-engineered products.

Supplementary information

Supplementary Information

Supplementary figures (PDF 4779 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirabella, T., MacArthur, J., Cheng, D. et al. 3D-printed vascular networks direct therapeutic angiogenesis in ischaemia. Nat Biomed Eng 1, 0083 (2017). https://doi.org/10.1038/s41551-017-0083

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41551-017-0083

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research