Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Host non-inflammatory neutrophils mediate the engraftment of bioengineered vascular networks

An Erratum to this article was published on 26 June 2017

Abstract

Notwithstanding the remarkable progress in vascular network engineering, implanted bioengineered microvessels mostly fail to form anastomoses with the host vasculature. Here we demonstrate that implants containing assembled human vascular networks (A-grafts) fail to engraft owing to their inability to engage non-inflammatory host neutrophils upon implantation into mice. By contrast, unassembled vascular cells (U-grafts) readily engage alternatively polarized neutrophils, which in turn serve as indispensable mediators of vascular assembly and anastomosis. The depletion of host neutrophils abrogated vascularization in U-grafts, whereas an adoptive transfer of neutrophils fully restored vascularization in myeloid-depleted mice. Neutrophil engagement was regulated by secreted factors and was progressively silenced as the vasculature matured. Exogenous addition of factors from U-grafts re-engaged neutrophils and enhanced revascularization in A-grafts, a process that was recapitulated by blocking Notch signalling. Our data suggest that the pro-vascularization potential of neutrophils can be harnessed to improve the engraftment of bioengineered tissues.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Engraftment of bioengineered microvascular networks.
Figure 2: Host neutrophils are indispensable for graft vascularization.
Figure 3: Host neutrophils are indispensable for graft vascularization in a syngeneic mouse C57BL/6 model.
Figure 4: Alternatively polarized neutrophils mediate U-graft vascularization.
Figure 5: Neutrophil activity regulated by secreted factors from the graft vasculature.
Figure 6: Notch inhibition promotes A-graft revascularization.

References

  1. Griffith, L. G. & Naughton, G. Tissue engineering—current challenges and expanding opportunities. Science 295, 1009–1014 (2002).

    Article  CAS  Google Scholar 

  2. Rouwkema, J., Rivron, N. C. & Van Blitterswijk, C. A. Vascularization in tissue engineering. Trends Biotechnol. 26, 434–441 (2008).

    Article  CAS  Google Scholar 

  3. Novosel, E. C., Kleinhans, C. & Kluger, P. J. Vascularization is the key challenge in tissue engineering. Adv. Drug Deliv. Rev. 63, 300–311 (2011).

    Article  CAS  Google Scholar 

  4. Schechner, J. S. et al. In vivo formation of complex microvessels lined by human endothelial cells in an immunodeficient mouse. Proc. Natl Acad. Sci. USA 97, 9191–9196 (2000).

    Article  CAS  Google Scholar 

  5. Chen, Y.-C. et al. Functional human vascular network generated in photocrosslinkable gelatin methacrylate hydrogels. Adv. Funct. Mater. 22, 2027–2039 (2012).

    Article  CAS  Google Scholar 

  6. Jain, R. K., Au, P., Tam, J., Duda, D. G. & Fukumura, D. Engineering vascularized tissue. Nat. Biotechnol. 23, 821–823 (2005).

    Article  CAS  Google Scholar 

  7. Melero-Martin, J. M. et al. Engineering robust and functional vascular networks in vivo with human adult and cord blood-derived progenitor cells. Circ. Res. 103, 194–202 (2008).

    Article  CAS  Google Scholar 

  8. Traktuev, D. O. et al. Robust functional vascular network formation in vivo by cooperation of adipose progenitor and endothelial cells. Circ. Res. 104, 1410–1420 (2009).

    Article  CAS  Google Scholar 

  9. Chen, X. et al. Rapid anastomosis of endothelial progenitor cell-derived vessels with host vasculature is promoted by a high density of cotransplanted fibroblasts. Tissue Eng. Part A 16, 585–594 (2010).

    Article  CAS  Google Scholar 

  10. Moisidis, E., Heath, T., Boorer, C., Ho, K. & Deva, A. K. A prospective, blinded, randomized, controlled clinical trial of topical negative pressure use in skin grafting. Plast. Reconstr. Surg. 114, 917–922 (2004).

    Article  Google Scholar 

  11. Larry, M. W. & Eber, L. L. S. Considerations in nerve repair. Proc. Bayl. Univ. Med. Cent. 16, 152–156 (2003).

    Article  Google Scholar 

  12. Giannoudis, P. V., Dinopoulos, H. & Tsiridis, E. Bone substitutes: an update. Injury 36, S20–S27 (2005).

    Article  Google Scholar 

  13. Kølle, S., Fischer-Nielsen, A., Mathiasen, A. B. & Elberg, J. J. Enrichment of autologous fat grafts with ex-vivo expanded adipose tissue-derived stem cells for graft survival: a randomised placebo-controlled trial. Lancet 13, 1113–1120 (2013).

    Article  Google Scholar 

  14. Mohr, F. W. et al. Coronary artery bypass graft surgery versus percutaneous coronary intervention in patients with three-vessel disease and left main coronary disease: 5-year follow-up of the randomised, clinical SYNTAX trial. Lancet 381, 629–638 (2013).

    Article  Google Scholar 

  15. Serruys, P. W. et al. Percutaneous coronary intervention versus coronary-artery bypass grafting for severe coronary artery disease. N. Engl. J. Med. 360, 961–972 (2009).

    Article  CAS  Google Scholar 

  16. Rogers, G. F. & Greene, A. K. Autogenous bone graft: basic science and clinical implications. J. Craniofac. Surg. 23, 323–327 (2012).

    Article  Google Scholar 

  17. Nahrendorf, M. et al. The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J. Exp. Med. 204, 3037–3047 (2007).

    Article  CAS  Google Scholar 

  18. Grunewald, M. et al. VEGF-induced adult neovascularization: recruitment, retention, and role of accessory cells. Cell 124, 175–189 (2006).

    Article  CAS  Google Scholar 

  19. Shojaei, F., Zhong, C., Wu, X., Yu, L. & Ferrara, N. Role of myeloid cells in tumor angiogenesis and growth. Trends Cell Biol. 18, 372–378 (2008).

    Article  CAS  Google Scholar 

  20. De Palma, M. et al. Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell 8, 211–226 (2005).

    Article  CAS  Google Scholar 

  21. De Palma, M., Venneri, M. A., Roca, C. & Naldini, L. Targeting exogenous genes to tumor angiogenesis by transplantation of genetically modified hematopoietic stem cells. Nat. Med. 9, 789–795 (2003).

    Article  CAS  Google Scholar 

  22. Nozawa, H., Chiu, C. & Hanahan, D. Infiltrating neutrophils mediate the initial angiogenic switch in a mouse model of multistage carcinogenesis. Proc. Natl Acad. Sci. USA 103, 12493–12498 (2006).

    Article  CAS  Google Scholar 

  23. Bekes, E. M. et al. Tumor-recruited neutrophils and neutrophil TIMP-free MMP-9 regulate coordinately the levels of tumor angiogenesis and efficiency of malignant cell intravasation. Am. J. Pathol. 179, 1455–1470 (2011).

    Article  CAS  Google Scholar 

  24. Piccard, H., Muschel, R. J. & Opdenakker, G. On the dual roles and polarized phenotypes of neutrophils in tumor development and progression. Crit. Rev. Oncol. Hematol. 82, 296–309 (2012).

    Article  CAS  Google Scholar 

  25. Christoffersson, G. et al. VEGF-A recruits a proangiogenic MMP-9-delivering neutrophil subset that induces angiogenesis in transplanted hypoxic tissue. Blood 120, 4653–4662 (2012).

    Article  CAS  Google Scholar 

  26. Massena, S. et al. Identification and characterization of VEGF-A-responsive neutrophils expressing CD49d, VEGFR1, and CXCR4 in mice and humans. Blood 126, 2016–2026 (2015).

    Article  CAS  Google Scholar 

  27. Melero-Martin, J. M. et al. In vivo vasculogenic potential of human blood-derived endothelial progenitor cells. Blood 109, 4761–4768 (2007).

    Article  CAS  Google Scholar 

  28. Lin, R.-Z., Chen, Y.-C., Moreno-Luna, R., Khademhosseini, A. & Melero-Martin, J. M. Transdermal regulation of vascular network bioengineering using a photopolymerizable methacrylated gelatin hydrogel. Biomaterials 34, 6785–6796 (2013).

    Article  CAS  Google Scholar 

  29. Melero-Martin, J. M. et al. Host myeloid cells are necessary for creating bioengineered human vascular networks in vivo . Tissue Eng. Part A 16, 2457–2466 (2010).

    Article  CAS  Google Scholar 

  30. Lin, R.-Z. et al. Human endothelial colony-forming cells serve as trophic mediators for mesenchymal stem cell engraftment via paracrine signaling. Proc. Natl Acad. Sci. USA 111, 10137–10142 (2014).

    Article  CAS  Google Scholar 

  31. Fridlender, Z. G. et al. Polarization of tumor-associated neutrophil phenotype by TGF-β: “N1” versus “N2” TAN. Cancer Cell 16, 183–194 (2009).

    Article  CAS  Google Scholar 

  32. Suchting, S. et al. The Notch ligand Delta-like 4 negatively regulates endothelial tip cell formation and vessel branching. Proc. Natl Acad. Sci. USA 104, 3225–3230 (2007).

    Article  CAS  Google Scholar 

  33. Roca, C. & Adams, R. H. Regulation of vascular morphogenesis by Notch signaling. Genes Dev. 21, 2511–2524 (2007).

    Article  CAS  Google Scholar 

  34. White, J. R. et al. Identification of a potent, selective non-peptide CXCR2 antagonist that inhibits interleukin-8-induced neutrophil migration. J. Biol. Chem. 273, 10095–10098 (1998).

    Article  CAS  Google Scholar 

  35. Mantovani, A. The yin-yang of tumor-associated neutrophils. Cancer Cell 16, 173–174 (2009).

    Article  CAS  Google Scholar 

  36. Fridlender, Z. G. & Albelda, S. M. Tumor-associated neutrophils: friend or foe? Carcinogenesis 33, 949–955 (2012).

    Article  CAS  Google Scholar 

  37. Sagiv, J. Y. et al. Phenotypic diversity and plasticity in circulating neutrophil subpopulations in cancer. Cell Rep. 10, 562–573 (2015).

    Article  CAS  Google Scholar 

  38. Fridlender, Z. G. et al. Transcriptomic analysis comparing tumor-associated neutrophils with granulocytic myeloid-derived suppressor cells and normal neutrophils. PLoS ONE 7, e31524 (2012).

    Article  CAS  Google Scholar 

  39. Cuartero, M. I. et al. N2 neutrophils, novel players in brain inflammation after stroke: modulation by the PPARγ agonist rosiglitazone. Stroke 44, 3498–3508 (2013).

    Article  CAS  Google Scholar 

  40. Ma, Y. et al. Temporal neutrophil polarization following myocardial infarction. Cardiovasc. Res. 110, 51–61 (2016).

    Article  CAS  Google Scholar 

  41. Fantin, A. et al. Tissue macrophages act as cellular chaperones for vascular anastomosis downstream of VEGF-mediated endothelial tip cell induction. Blood 116, 829–840 (2010).

    Article  CAS  Google Scholar 

  42. Murdoch, C., Giannoudis, A. & Lewis, C. E. Mechanisms regulating the recruitment of macrophages into hypoxic areas of tumors and other ischemic tissues. Blood 104, 2224–2234 (2004).

    Article  CAS  Google Scholar 

  43. Murdoch, C., Muthana, M., Coffelt, S. B. & Lewis, C. E. The role of myeloid cells in the promotion of tumour angiogenesis. Nat. Rev. Cancer 8, 618–631 (2008).

    Article  CAS  Google Scholar 

  44. Benelli, R. et al. Neutrophils as a key cellular target for angiostatin: implications for regulation of angiogenesis and inflammation. FASEB J. 16, 267–269 (2002).

    Article  CAS  Google Scholar 

  45. Baranski, J. D. et al. Geometric control of vascular networks to enhance engineered tissue integration and function. Proc. Natl Acad. Sci. USA 110, 7586–7591 (2013).

    Article  CAS  Google Scholar 

  46. Riemenschneider, S. B. et al. Inosculation and perfusion of pre-vascularized tissue patches containing aligned human microvessels after myocardial infarction. Biomaterials 97, 51–61 (2016).

    Article  CAS  Google Scholar 

  47. Ausprunk, D. H., Knighton, D. R. & Folkman, M. J. Vascularization of normal and neoplastic tissues grafted to the chick chorioallantois. Role of host and preexisting graft blood vessels. Am. J. Pathol. 79, 597–618 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Nolan, D. J. et al. Molecular signatures of tissue-specific microvascular endothelial cell heterogeneity in organ maintenance and regeneration. Dev. Cell 26, 204–219 (2013).

    Article  CAS  Google Scholar 

  49. Lee, J.-H. et al. Lung stem cell differentiation in mice directed by endothelial cells via a BMP4–NFATc1–thrombospondin-1 axis. Cell 156, 440–455 (2014).

    Article  CAS  Google Scholar 

  50. Hu, J. et al. Endothelial cell-derived angiopoietin-2 controls liver regeneration as a spatiotemporal rheostat. Science 343, 416–419 (2014).

    Article  CAS  Google Scholar 

  51. Kusumbe, A. P., Ramasamy, S. K. & Adams, R. H. Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone. Nature 507, 323–328 (2014).

    Article  CAS  Google Scholar 

  52. Shen, Q. et al. Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells. Science 304, 1338–1340 (2004).

    Article  CAS  Google Scholar 

  53. Zhou, P. et al. Interrogating translational efficiency and lineage-specific transcriptomes using ribosome affinity purification. Proc. Natl Acad. Sci. USA 110, 15395–15400 (2013).

    Article  CAS  Google Scholar 

  54. Wang, Y. et al. Ephrin-B2 controls VEGF-induced angiogenesis and lymphangiogenesis. Nature 465, 483–486 (2010).

    Article  CAS  Google Scholar 

  55. Lin, R.-Z. et al. Induction of erythropoiesis using human vascular networks genetically engineered for controlled erythropoietin release. Blood 118, 5420–5428 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S.-C. S. Jaminet and D. Li (Center for Vascular Biology, Beth Israel Deaconess Medical Center, Boston, USA) for quantitative reverse-transcription polymerase chain reaction analyses. Histology was supported by Core Facility of the Dana-Farber/Harvard Cancer Center (P30 CA06516). This work was supported by National Institutes of Health grants R00EB009096, R01AR069038, R01HL128452 and R21AI123883 to J.M.M.-M.

Author information

Authors and Affiliations

Authors

Contributions

R.-Z.L. and J.M.M.-M. conceived and designed the project. R.-Z.L., C.N.L., R.M.-L., J.N., P.Z., M.S., M.A.M. and J.M.M.-M. performed the experimental work. All authors discussed and analysed the data and edited the results. W.T.P., B.P. and S.E. provided crucial materials. R.-Z.L. and J.M.M.-M. wrote the manuscript.

Corresponding author

Correspondence to Juan M. Melero-Martin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary notes. (PDF 4906 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, RZ., Lee, C., Moreno-Luna, R. et al. Host non-inflammatory neutrophils mediate the engraftment of bioengineered vascular networks. Nat Biomed Eng 1, 0081 (2017). https://doi.org/10.1038/s41551-017-0081

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41551-017-0081

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research